Chabot – Las Positas
Community College District

Information Technology Services

Disaster Recovery Plan
(General Version)

Note: Selected charts and tables are blanked out for security purposes

August 1, 2010
Submitted By
J. Methe
Chief Technology Officer
Table of Contents

I. Table of Contents ... 2

II. Introduction .. 5

III. PURPOSE ... 6

IV. SCOPE ... 8

V. DISASTER RECOVERY MANAGEMENT AND TECHNICAL TEAM ... 10

VI. IT INFRASTRUCTURE ... 11

 ITS Data Center, LPC Building 1900... 11
 HVAC Control: ... 11
 Humidity Control: ... 12
 Control and Monitoring: .. 13
 LPC Building 1900A MPOE/MDF .. 13
 HVAC Control: ... 14
 Supplemental Data Center at Chabot College ... 14
 Chabot College Building 200 MPOE ... 15
 Pleasanton District Office Disaster Recovery Site ... 15

VII. NETWORK INFRASTRUCTURE ... 17

 LAN (LOCAL AREA NETWORK) CAMPUS.. 17
 Metropolitan Area Network (MAN) .. 18
 Wide Area Network (WAN) .. 20
 FIREWALL .. 20
 SECURITY ... 20
 IBM ENTERPRISE SERVERS (FOR BANNER SYSTEM) ... 22
 IBM ORACLE DATABASE .. 25
 SERVERS .. 25
 E-Mail/Collaboration ... 28
 Domain Name Resolution (DNS)/Dynamic Host Configuration Protocol (DHCP) 29
 File Sharing .. 29
 Backup Strategy ... 30
 Backup Hardware ... 31
 Backup Software ... 31
II. Introduction

This document provides the Disaster Recovery (DR) and Business Continuity Plan for Chabot-Las Positas Community College District (CLPCCD) to include Chabot College located in Hayward, Las Positas College in Livermore, District Office in Pleasanton, and the Contract Education office in Dublin. The primary District Data Center that provides district-wide Enterprise systems to all locations is situated at the Information Technology (IT) Building 1900 on the Las Positas campus.

The information presented in this plan documents the objectives, scope, offices of responsibility, system descriptions, and most importantly the disaster recovery/emergency activation, execution, and reconstitution procedures.

The mission of the Chabot-Las Positas Community College District is to provide the leadership and resources to ensure that all students within the District will continue to have an equal opportunity to pursue and achieve their educational goals. With this in mind, Information Technology Services (ITS) plays a vital role in providing the computing resources to enable and enhance the students’ learning experience. Increasingly, students rely on ITS systems to register for classes, conduct online instructions, electronic mail to communicate with faculty, multimedia and video on demand, information research through the Internet, and a myriad of other applications. On the same token, District employees (staff and faculty), depend on ITS for day-to-day tasks to support students and the colleges.

Clearly, CLPCCD is highly dependent on Information Technology resources such as telecommunications and network connectivity, computer systems, and applications, to fulfill its mission 7x24x365. Thus, the ITS enterprise encompassing facilities and infrastructure, connectivity, computer systems, operating systems, and applications must be reliable, resilient, and available to support computing services for students, employees, and the community. This is the primary purpose of the CLPCCD’s Data Center with its Disaster Recovery plan to ensure maximum availability of all critical systems and services.

It should be noted that this document includes sensitive information with detailed descriptions of hardware and software computer systems which is confidential to the Information Technology Services staff within the district. Given the level of detail that is presented, this information, if used improperly, could place CLPCCD in a vulnerable position with respect to viruses and other threats that could impact the IT infrastructure. As such, this entire document will be circulated to a limited set of District ITS and LPC IT staff, and is considered “For ITS Limited Distribution only” to those individuals who have a need to know this information in performance of their daily jobs. This “General Version” of the Disaster Recovery plan document has been modified for security purposes to blank our selected charts and tables with sensitive information and to remove the Appendices containing additional detailed information. This information is available for viewing upon request to the Chief Technology Officer.
III. PURPOSE

The primary objective of the CLPCCD Disaster Recovery plan is to protect and safeguard the District’s Information Technology resources to include the network infrastructure, servers, applications, and data and to ensure the ability to function effectively and ensure business continuity in the event of a disruption to normal operating procedures. This Disaster Recovery plan documents methods for response, recovery, resumption, restoration, and return after severe disruption.

The purpose of a Disaster Recovery plan is to formulate a strategy, define processes and procedures, and set in motion an action plan to effectively continue business and a return to normalcy after a disaster has struck. Specifically, the objectives are:

- Protect and safeguard the District’s Information Technology resources to include the network infrastructure, servers, applications, and data.
- Ensure the ability to function effectively and ensure business continuity in the event of a severe disruption to normal operating procedures.
- Document methods for response, recovery, resumption, restoration, and return after severe disruption.
- Minimize the effects of a disaster on on-going operations.
- Present an orderly course of action for restoring critical computing capabilities.
- Describe an organizational structure for carrying out the plan.
- Provide information on personnel and staff and who will be responsible for carrying out the plan.
- Identify and describe the infrastructure, equipment, computer hardware, and applications.
- Identify and classify the threats and risks that may lead to a disaster.
- Define the resources and processes that need to be in place to recover from a disaster.
- Define the reconstitution mechanism to get business back to normal from a disaster recovery state.

District ITS has established district standards and best practices for ensuring hardware and software redundancy of the critical district services. District standards are designed to minimize system interruptions and to reduce the system recovery time when failures occur. Backup systems are available for the primary District Data Center operations and environment. Hardware redundancy is instituted for all the critical application servers and application redundancy is achieved where feasible based on vendor allowances. In each of the applicable sections, the backup and redundancy capabilities are explained in detail for those specific computing resources.
For the predictable failures which include computer equipment failure, power failure, communication line failure, or damaged computer files, the following procedures will be invoked. In the event of such predictable failures, the responsible individual will determine the nature of the equipment failure and take appropriate action to coordinate repair and restoration of services. In the event that the responsible individuals are unavailable, ITS management will delegate responsibility to the appropriate alternate staff.

For the exceptional failures, the following general strategies would be used. If any portion or all of the facilities supporting the District’s central computing resources were damaged beyond use, ITS management and other District management would work with the District’s insurance carriers to determine whether to pursue repair or to secure temporary facilities. If the damage is to be remedied by repairs, ITS management will direct the process in compliance with established District procedures. If temporary facilities are required, appropriate contracts will be let to provide for rental facilities and equipment as needed. For the IBM System supporting Banner, a mutual assistance agreement with San Mateo Community College District has been established to provide temporary services for critical Banner applications as identified based on the severity of the outage.
IV. SCOPE

The Disaster Recovery plan described in this document pertains to Information Technology resources hosted at Chabot College, Las Positas College, District Office, and Contract Education.

These resources are as follows:

- Network infrastructure includes the telecommunication circuits, firewall devices, routers, switches, and cabling.
- Servers hosting the applications and storing data used by District employees. These servers include the Banner System, other third party applications that interface with the Banner System, e-mail, Internet, Intranet, file sharing, network authentication, DNS, DHCP, and network management.
- Data stored either in the servers or on storage area networks (SANS) and includes documents (Word, Excel, Powerpoint), e-mail correspondences and attachments, system-related files, web content, and application programs.

The Disaster Recovery plan is designed to address two levels of service interruption:

- Predictable failures confined to specific systems or functional areas such as electrical power failures, computer or network equipment failures, HVAC failures, communications line failures, or file damage.
- Exceptional failures with broad scope of impact on computer services produced by events such as a computer data center related fire, flood, earthquake, etc. where the event does not cripple District operations as a whole.

The Disaster Recovery plan is not designed to address conditions of widespread damage throughout the District. However, it will help define the activities that might be required to restore central computing services to the District in the event of broad catastrophe.

An important component of a disaster recovery plan is to identify the threats and risks that can bring about disasters that can severely impact business continuity. A disaster recovery plan employs measures to prevent or mitigate the effects of a disaster beforehand and minimizes the risks. Some of the higher risks threats are identified here that could be natural and human-created.

- Earthquake: The threat of an earthquake in the San Francisco Bay Area is high, and therefore ranks as the most likely cause of a disaster. Scientists have predicted that a large earthquake along the numerous fault lines may happen any time in the next few years. An earthquake has the potential for being the most disruptive for this disaster...
recovery plan. There is also a likelihood of fire occurring after an earthquake due to gas leaks. If the campus buildings and data center and network infrastructures are heavily damaged, restoration of computing and networking facilities following a bad earthquake could be very difficult and require an extended period of time due to the need to do wide-scale building repairs.

- Fire: The threat of fire on the campuses, especially in the District’s ITS Data Center area located on the Las Positas campus, is very real and poses the highest risk factor of all the causes of disaster mentioned here. The Data Center building 1900 is filled with electrical devices and connections that could overheat or short out and cause a fire. During hot summers, the treat of brush fire from the surrounding areas is also real. Also, fire can be human created; e.g., arson.

- Computer Crime: This is becoming more of a threat as systems become more complex and access is more highly distributed. With the new networking technologies, more potential for improper access is present than ever before. Computer crime usually does not affect hardware in a destructive manner. It may be more insidious, and may often come from an unexpected external source or from within. Viruses and worms can be imported from the outside causing denial of service to critical systems.
V. DISASTER RECOVERY MANAGEMENT AND TECHNICAL TEAM

The following management and technical teams are responsible for supporting the CLPCCD Disaster Recovery (DR) plan and will contribute as necessary based on their core competencies:

- Chief Technology Officer (CTO): Primary point of contact for the Disaster Recovery plan. Manages and coordinates all IT resources and provides technical expertise, standards, policies, and procedures to ensure restoration of services in the event of a disaster.
- Information Technology Services (ITS) Staff: Provides the technical skills to salvage the critical systems and services from hardware and software malfunction, to preserve the integrity of the systems data, to coordinate with vendors as needed during the disaster, and to restore the Data Center services as soon as possible in accordance with the priorities established by the DR plan.
- Maintenance and Operations: Provides day-to-day maintenance and monitoring of IT infrastructure to ensure viability of HVAC, electrical, and plumbing systems in support of the DR plan. Coordinates all services for the restoration of support infrastructure.
- Purchasing and Business Services: Manages and coordinates the purchasing of hardware and software in support of the DR plan.

Refer to Section VIII for “ITS Emergency Contact Information” and for “M&O Emergency Contact Information” for both Chabot and Las Positas Colleges.

Refer to Section XII “Initiation of the Disaster Recovery Plan” for the various scenarios with action plans for responsible parties.
VI. IT INFRASTRUCTURE

CLPCCD ITS infrastructure that houses computer systems, telecommunications, and data networking equipment is located at LPC building 1900, LPC building 1900A, Chabot building 200, Chabot building 300, District office in Pleasanton, and Contract Education office in Dublin. Each of the primary facilities is discussed in more detail below.

ITS Data Center, LPC Building 1900

The nerve center of CLPCCD’s ITs infrastructure is located in Las Positas College (LPC), building 1900 Data Center. The facility houses the IBM Enterprise servers that hosts Sungard’s Banner System, which is the District’s ERP application. The data center also contains HP servers that host critical applications: Banner auxiliary applications such as Luminus, Degree Works, LPC electronic mail and user data, Intranet and Internet web services, and network management tools.

As part of the construction of the Data Center, a number of sophisticated systems were designed to provide a robust operating environment. They are HVAC control, Humidity, Power, and Control and Monitoring systems. Each of these systems is described below.

HVAC Control:

The Heating, Ventilating and Air Conditions systems for the network and server rooms in the IT building consist of the following:

- **Primary Air Handler Unit (AHU-2A):** This supplies the heating/cooling for the Administrative computer room, Network room and LPC Server rooms. This unit is fed from the Central Utility Plant (CUP).
- **Secondary Air Handler Units (AHU-2B):** This unit is a redundant unit that also supplies heating/cooling for the Administrative computer room, Network room and LPC Server rooms. This unit is fed from the Central Utility Plant (CUP). This unit is activated if a failure of the Primary AHU-2A occurs.
- **Supplemental 5 Ton System:** In addition to the Primary and Secondary AHU systems, a ceiling mounted HVAC system is installed in the Administrative Computer room. In the event of a temperature rise in the computer room, this unit is triggered into operation at an elevated temperature of 78 degrees. This provides additional cooling directed towards the IBM Enterprise Server air intake vents.

The water source for the HVAC systems comes from the Central Utility Plant (CUP). The CUP is equipped with a primary and secondary pump/chiller. The primary pump/chiller operates
during the day to deliver cold water from ice storage to the IT Building systems and the rest of the LPC campus on the CUP loop. This primary system operates from 6am to 10pm. At 10pm, the secondary pump/chiller comes into operation while the rest of the CUP is in ice-making mode. In the event of a failure of the primary pump/chiller, the secondary pump/chiller initiates into service. During ice-making mode, the primary pump/chiller initiates back into service if the secondary pump/chiller fails.

If both these CUP systems fail, the IT Building is equipped with a backup chiller. The backup chiller automatically initiates into service to feed the AHU2A/2B. Typically, this would occur in the following scenarios:
 - CUP chillers, primary and secondary, fail
 - Power failure on campus which takes down the CUP equipment
 - EMS panel in the IT building loses connectivity to the main monitoring system.

Except for planned power outage needed for maintenance and/or construction, it is not expected that the Backup Chiller would run regularly. Monthly testing is scheduled to insure correct operation.

Humidity Control:

Each of the Network and Computer rooms are equipped with a Humidifying system which senses and releases moisture to maintain the proper humidity range.

POWER FOR BUILDING IT BUILDING SERVER AND NETWORK ROOMS:

CLPCCD District ITS disaster recovery posture is reliant on power continuity through UPS protection. This provides a basic operating environment in the event of power failure.

The IBM Enterprise servers in the data center are connected to a large UPS system. If electricity is lost, the UPS powers the computer room. The UPS is network attached and has the ability to send SNMP messages.

Further, the ITS Data Center is connected to a diesel generator that automatically provides power when the UPS battery is exhausted.

The data center is equipped with new Eaton Powerware UPS systems for power-protection. The systems deployed are as follows:
 - **Powerware 9355 UPS** – This UPS is a dedicated UPS to provide service to the IBM Enterprise Servers supporting the Banner System, which is located in the Administrative Computer Room. It connects to the electrical panel UR1, which serves the electrical circuits to the IBM Enterprise servers. This UPS is sized to support a 40 minute uptime, which is the time it takes for the execution of a script to do a clean shutdown of the IBM Servers.
 - **Powerware 9395 UPS** – This UPS provides service to the LPC Server Room, Network room, and the remaining Administrative Computer Systems. It connects to the electrical
panels UR1-4, which serve the electrical circuits to the rooms just listed, and a select number of power outlets in certain offices in the IT building.

The UPS systems are equipped with controller software that can be used to trigger customized scripts on each server, in the event of battery drain.

These UPS systems are all powered by a 400KVA Backup Generator. The Generator is housed in the lot immediately beside the IT building. A 400 gallon fuel tank feeds the generator. In the event of a power failure, an automatic transfer switch (ATS) initiates the generator to start. The generator is fully running to supply power to the UPS systems in less than 60 seconds. The fuel tank is sized to provide 12 hours of runtime for the fully deployed Network and Computer rooms. CLPCCD M&O maintains an open PO with a refueling company who will come onsite to refuel the tank on a scheduled or emergency basis. The generator is tested monthly to insure correct functionality.

Control and Monitoring:
There are several levels of control and monitoring:

- **UPS Control and Monitoring** – The UPS systems are equipped with SNMP network cards to provide web access for monitoring. They are also equipped with temperature probes to measure the temperature in the B1900A, and the Administrative Computer room (two locations). In the event of a power or temperature issue, the UPSes have been configured to email a distribution list with the details of the issue. The UPS trigger for high temperature alerts is currently set for 25°C (~77 degrees F).

- **Security Monitoring** - The AMAG security system monitors temperature probes in the Network and Computer room using Enviro-Alert stations. In the event of a high temperature situation (currently set for 74 degrees F), the AMAG server triggers a visual and audible alarm to the monitoring staff. The monitoring staff then alerts with phone calls to address the high-temperature malfunction. A low temperature threshold of 55 degrees F is also configured.

- **Allerton Monitoring** - The Las Positas campus uses an Allerton system as the comprehensive monitoring system for building automation systems. This system receives alerts from the EMS panel, HVAC devices and status probes in the IT Building. Response to alerts of abnormal functionality trigger emails and telephone contact to for action.

Since many of these alerts are generated by equipment malfunctions, CLPCCD M&O is contacted as the first responders. CLPCCD District ITS is contacted secondarily to be ready in the event that the situation cannot be corrected, and the servers and equipment need to be shut down.

LPC Building 1900A MPOE/MDF

LPC has a network and telecommunications facility that houses the telecommunication vendor’s equipment, which is essential for wide area connectivity and the phone system. These facilities contain the cable plant and network devices such as firewalls, routers, and switches that provide
local area network connectivity for the campuses. At LPC, the telecommunication facility is located in building 1900A, which is next to the IT Building. The following systems are installed.

HVAC Control:

In Building 1900A, a series of new HVAC units are installed. This consists of a 10 Ton unit which directs airflow towards the MPOE end of the building. Two five (5) ton units provide airflow directed at the MDF end of the building. In the event of a failure of one of the units, the remaining units can continue to provide cooling to building, while repairs are initiated. Building 1900A has been equipped with new Eaton Powerware UPS systems for power-protection. The UPS deployed is:

- **Powerware 9390 UPS** – This UPS provides service to the B1900A network electronics and HVAC systems. This UPS is sized to support a 10 minute uptime.

Supplemental Data Center at Chabot College

Building 300 in Chabot College housed the ITS data center up until April of 2010. The IBM Enterprise Servers supporting the Banner System and most of the District servers were relocated to LPC, leaving a few servers at Chabot for site specific purposes.

Building 300 is currently scheduled for construction modernization which will improve the facilities and be available with the completion of construction in late 2011 to early 2012.

During the construction, power and HVAC will be disrupted in B300. CLPCCD District ITS has planned and executed an interim connectivity design to maintain the uptime of the servers and networks on the Chabot campus. This includes:

- **Relocation of servers to B196** – The servers, which will continue to be hosted at the Chabot site, have been relocated to an interim space in Building 100. In an unused office space, a room was converted to act as a small computer room. It was equipped with 24x7 temperature control (small portable HVAC system), and power for a small UPS. The District and Chabot College servers are temporarily housed in this room.

- **Relocation of campus network switching** – B300 houses the main fiber terminations (MDF) for the fiber backbones that connect the remote buildings to the Cisco core switch. The fiber backbones have been extended to Building 200, where the core switch is relocated. This will provide connectivity to the buildings in a stable electrical and temperature environment. This Building 200 location is temporary until the Building 300 facility renovations are completed, at which time all equipment will be moved back to building 300.

After construction, the Building 300 computer and network rooms will be improved in the following areas:

- **Computer room layout** – A more efficient computer room layout with six four-post racks will provide (1) more racking space for server equipment, (2) more circulation and access for maintenance, (3) defined hot aisle/cold aisle for efficient cooling control (4)
increased network connectivity to Category 6A data cable (5) more available and accessible power.

- Updated network room – The network room (MDF) will be equipped with new racking, cable management, more efficient fiber patch panel layout and Category 6A data cabling to station jacks. The Cisco core switch will be rehosted back to the renovated MDF.
- New UPS – The current 30KVA UPS will be replaced with a new UPS capable of supporting a 45KVA load. A transfer switch will allow the installation of a generator to supplement the UPS power, in the event of a facilities outage.
- New HVAC - The HVAC systems will be replaced and integrated with the campus building monitoring system (Allerton).

Chabot College Building 200 MPOE

The telecommunications facility housing AT&T and CENIC equipment that provides Internet and WAN connectivity for Chabot College is located in Chabot building 200. AT&T provides UPS backup battery supply in case of power outage.

Pleasanton District Office Disaster Recovery Site

The District Office (DO) houses a computer room that was built by previous tenants. That room currently contains the network switching/routing equipment and limited server connectivity. A UPS is installed to power the telephone, and data network, and servers for approximately 30 minutes.

In the coming year, ITS plans to improve the DO computer room so that ITS can install a failover IBM Enterprise system that is currently located in the Administrative Computer Room in the IT Building at LPC. The following improvements are planned:

- Electrical upgrades - The DO computer room will require upgrades to the electrical panels, circuits and receptacles.
- New UPS – A larger UPS, which can sustain the load of the failover IBM Enterprise system, will be installed.
- Improved HVAC – As needed to support the increased heat load, the HVAC will be upgraded.
- Modified room layout – To accommodate a proper working environment and access, the computer room may be modified in one or more of the following ways:
 - New, larger doorway
 - Removal of the raised floor
 - Minor window and wall changes
 - Minor lighting changes
- Improved monitoring – All new systems will be integrated to the network and building monitoring systems for alerting and maintenance.

ITS will move forward with detailed planning and implementation of this Disaster Recovery site in 2011. Upon completion, a failover IBM Enterprise server will be relocated from the IT Building at LPC and installed at this backup data center site.
All network equipment and servers in the various facilities are mounted on racks that have been installed to meet California state earthquake seismic requirements. The racks are bolted to the concrete and are secured at the top to 12” wide ladder racking that are connected to each side wall. Servers that are not bolted to the racks are braced with either straps or support brackets.
VII. NETWORK INFRASTRUCTURE

CLPCCD operates three types of networks that provide connectivity: Local Area Network (LAN), Metropolitan Area Network (MAN), and Wide Area Network (WAN). Each type of network is described below.

LAN (LOCAL AREA NETWORK) CAMPUS

Chabot and LPC campus LANs comprise of Cisco routing and switching products to serve as the respective core campus network backbones. This offers best-in-class capability and exceptional manufacturer’s support. The standardization of command access for configuration and maintenance allows for consistency of operation.

The campus LANs have undergone a total equipment reconfiguration and upgrade in the past couple of years. Key tenets of this new network architecture are as follows:

- **High Availability:** Incorporate as much redundancy and diversity into the design that is cost effective in order to ensure maximum uptime and permit software and hardware maintenance to be performed without downtime. To accomplish high availability and redundancy, each campus has two Cisco Catalyst 6509 router/switches with redundant power supplies and intelligent engine modules.
- **Security:** Network segmentation into multiple security zones to isolate user communities from each other and to protect key areas of the network from worms and viruses. This segmentation is accomplished through virtual local area networks (VLANs) on a per building and usage basis.
- **Upgraded Fiber Backbone Building Connectivity:** An upgrade of the fiber backbones to allow for high bandwidth, diverse connectivity is a basis for the building connectivity design.
- **Redundant Server Connectivity:** Wherever possible, redundant, high-performance connections to mission-critical servers by using dual network interface cards have been installed to limit downtime caused by NIC card failures.
- **Transparent Internet Rerouting:** The success of the instructional environment is dependent on access to Internet resources. In the event of failures, fast and transparent traffic rerouting is enabled.
- **Extensive support of advanced switching features:** Advanced features such as Quality of Service (QoS) and security parameters are important design requirements to support high-quality video conferencing, responsive administrative and educational application access, and reduce the impact of worms and viruses.
- **Manageability:** The new architecture is built upon consistent hardware platforms and software configurations. Native IP, an Internet standard, is the predominant routing protocol.
To achieve a highly available and redundant LAN architecture, the campus’ core network backbone consists of Cisco Catalyst 6509 switches with gigabit fiber links, 10/100/1000 switching ports, dual supervisor engines, and redundant power supplies. Additionally in large campus buildings that are densely populated with computers, Cisco 4506 switches with redundant power supplies. The smaller and less densely populated buildings are equipped with Cisco 3560 switches.

At the Chabot Campus, the switches are connected using the existing multimode fiber with 1000Base-LX connectivity over mode-conditioning cables. In newer buildings, single mode fiber is used. Limited 1000Base-SX connections have been implemented in buildings that are equipped with multiple Telecommunications Closets, and for buildings with short-length fiber backbones, close to the Building 300 core.

At the Las Positas Campus, the switches are connected using the existing single fiber with 1000Base-LX connectivity. Many of the fiber runs from Building 1900 to the buildings on campus exceed the distance allowed for 1000Base-SX connectivity. For simplicity of operation, the buildings were connected uniformly with single mode connections.

For the core campus LAN routers and switches, Cisco SMARTNET maintenance agreement has been purchased to provide 7x24x365, 4 hour response time to replace failed hardware components. For the smaller building closet switches, ample spare parts are available and ready to be deployed as necessary.

Metropolitan Area Network (MAN)

As part of Bond Measure B, the District upgraded all connections between the District Data Center and the colleges and district office to a Metropolitan (Metro) Ethernet Wide Area Network (Ethernet over Fiber Optics). In September 2008, the District implemented the AT&T OPT-E-MAN metro Ethernet wide area network (MAN) to complement and provide additional bandwidth to the existing T-1 circuits.

Opt-E-Man provides an additional bandwidth of 10 megabit/second between Chabot and District office and 20 megabit/second between Chabot and Las Positas. Previously, we provisioned WAN circuits of 3 megabit/second between Chabot and District office and 4.6 megabit/second between LPC and Chabot. The additional bandwidth alleviates connection-related latency problems due to increasing bandwidth requirements from new projects, remote file sharing amongst departments, and growth of multi-media applications.

Metro Ethernet wide area network is a new and robust technology that utilizes fiber optics to achieve high speed network connectivity between remote locations. Ethernet is an industry-accepted, proven local area network (LAN) technology that is used to connect PCs to servers.
located in a building. Recently, Ethernet LAN has been expanded to provide network connectivity for remote sites, hence the term metropolitan. Metro Ethernet, takes advantage of high speed connections to servers located remotely. Metro Ethernet is expandable. If the need arises for additional bandwidth in the future, additional bandwidth can be provisioned.

If the MAN fails, each site can failover to backup T-1 circuits. There are three aggregated T-1 circuits between Chabot and LPC, one T-1 circuit between District and LPC, and two aggregated T-1 circuits between Chabot and District office. In case of MAN failure, traffic can easily be rerouted to utilize the backup T-1 circuits. Below is an illustration:
Wide Area Network (WAN)

Internet connectivity and student and employee access to resources via the World Wide Web is crucial to student learning. With the Internet, the colleges have the most up-to-date technology to enrich, enhance, and broaden students' learning environments through applications such as online courses, video-on-demand, video conferencing, social networking, collaborative learning, and rich multimedia experiences.

In partnership with our service provider, CENIC and through the State Chancellor’s office and AT&T, one gigabit of network connectivity for each college has been provisioned. Part of this provisioning includes a redundant 45 mbit/second connection so in the event the primary gigabit connection fails, the campuses will have a backup connection to the Internet. Moreover, CENIC has provisioned for redundant and alternative fiber paths and protocol routing within the Internet cloud to mitigate major fiber disruptions.

FIREWALL

To provide Internet connectivity for the campuses and more importantly secure the internal networks, Cisco PIX firewalls have been installed. Each campus has a pair of PIX 515E firewalls, equipped with unlimited licenses, multiple Ethernet interfaces and VPN accelerator cards. The PIXes are running in master-slave failover mode, so that if the master PIX fails, the slave PIX converts to the master and takes over network transactions transparently.

At the Chabot campus, the PIX 515E pair provides connectivity to the CENIC gigabit link, the internal networks, and the administrative and instructional server DMZ networks. At the LPC campus, the PIX 515E pair provides connectivity to the CENIC Internet gigabit link, the internal networks and the instructional server DMZ networks.

The PIX firewalls have Cisco SMARTNET maintenance support at 7x24x365, 4-hour response time. Further, Virtual Private Network (VPN) have been configured for each campus PIX firewalls. VPN allows CLPCCD ITS network technicians to securely access the internal network during off-duty hours to monitor, manage, and troubleshoot the network.

SECURITY

The District ITS department is responsible for maintaining security and access to administrative servers at all sites, including the Banner application access. College Computer Services are responsible for security to servers they support. Security includes network accessibility and physical security.

At the District office, the servers are located in a locked room only accessible to District ITS staff. Further, the entire District Office is secured with keypad access to the office and meeting areas.
At Chabot campus, the network and servers are located in locked areas in Chabot buildings 196 and 200. The college computer staff monitors access to the computer rooms. The area is protected with a Sonitrol alarm system after hours.

At LPC campus, core network equipment is located in building 1900C and ITS servers are located in building 1900 Data Center. These facilities are alarmed after hours. Key and pass codes are required for entry any time of the day.

Servers maintained by LPC IT Computer Support staff are distributed across campus. Many of them are kept in locked cabinets where the network equipment resides. Security will be improved when the servers are moved to the LPC ITS Data Center, which is scheduled to be completed by early 2011.

District ITS department maintains three separate user accounts. This includes Novell Directory Services (eDirectory) accounts/Groupwise e-mail, Banner System, and IBM AIX user accounts. IBM-AIX passwords are case sensitive and users are required to change them periodically. Banner System passwords are set to expire to require users to change their passwords periodically. Users are recommended to change their Novell and email passwords on a regular basis a needed.

At Chabot, Instructional Domain Authentication passwords are managed by the Chabot Computer Support staff. This includes faculty passwords in Microsoft Active Directory environment and Windows Local Accounts. There are no individual student user accounts currently in use at Chabot, instead generic student accounts, with limited access, are used by the students to access the Instructional Network resources.

At LPC, Instructional Domain authentication passwords are managed by LPC IT Computer Support staff, which includes faculty passwords in Microsoft Active Directory environment and Windows Local Accounts. There are no individual student user accounts currently in use at Las Positas. Instead generic student accounts, with limited access, are used by the students to access the Instructional Network resources.

Virus and worm attack is possible on the network, particularly on the Instructional network. CLPCCD uses anti-virus protection on each desktop to limit the possibility of virus attack.

Symantec’s Norton Anti-Virus Corporate Edition version 11 is used on the XP workstations. The virus definitions are updated to the ITS-2K Windows server, and the administrative workstations automatically update from the current signature file directly from the server or some directly from Symantec.

At Chabot College, Symantec’s Norton Anti-Virus Corporate Edition 11 is located on the APPSRV server. The virus definitions are updated from the Symantec web site and user desktops download the definition files from the local server.
At LPC, Symantec’s Norton Anti-Virus Corporate Edition is used on Marvin and Cooper. The virus definitions are updated from the Symantec web site.

Overall network security is the responsibility of the District ITS department. Like the servers, the core network equipment is installed in locked areas with restricted access. Some of the edge equipment is more vulnerable because it is located in classrooms and more open areas. As buildings are renovated and modernized, network equipment will be stored in locked areas with restricted access. The CLPCCD ITS Network Cabling Standards have clearly documented the requirements for separate, secure Information Technology and Telecomm rooms. The Security Master Plan issued in the Fall of 2005 has identified Information Technology and Telecomm rooms as secure locations that require separate card-key access and is restricted to IT staff.

Network device passwords, such as routers and switches are also maintained by the District ITS department and changed as needed to secure access. Passwords are formatted with special characters to provide an additional level of security. Switches have a user level logon to allow Chabot and LPC computer support technicians to modify VLAN assignments as needed at each campus. Telnet access is used for switch/router remote access, although the network staff has begun to switch to ssh access.

Access Control Lists are still in use at CLPCCD. They have been migrated to the new 6509 core switches. The ACLs are used principally to limit access to the administrative networks from the instructional and faculty networks.

IBM ENTERPRISE SERVERS (FOR BANNER SYSTEMS)

CLPCCD utilizes Sungard SCT Banner as the core administrative, Enterprise Resource Planning (ERP) system. Banner supports applications for Student Services, Academic Services, Financial Aid, Finance, Human Resources, and Payroll functions within the district. Banner utilizes Oracle as the database engine.

Banner applications are as follows:

- Banner (Internet Native Banner INB) – Student, Financial Aid, Finance, HR, Payroll
- Class Web (web-based for Student)
- Luminus student portal
- Web for Finance (web-based)
- Web for Faculty (web-based)
- Web for Employee (web-based)
- Web for Financial Aid (web-based)
- Crystal Enterprise (WebI) for queries and reporting
- Degree Works
- College Net Room Scheduling
In the near future, CLPCCD will be adding Enrollment Management Suite, Document Management system, and ad hoc query/reporting tools, like Operational Data Store (ODS), Data Warehouse and Cognos.

As part of the data center move, two new IBM servers were purchased and installed. The first IBM server is installed in the ITS data center at Las Positas along with the second IBM server as its initial location. The second IBM server functions as a redundant system. Hardware and software configurations are replicated so either server can operate as the primary Enterprise server. As part of the district’s comprehensive Disaster Recovery plan, the second IBM server will be installed in the future in 2011 at the District office. Vision Solutions software, Echo Cluster and Echo Stream, which provides full software replication for the operating systems, will be installed concurrent with the relocation of the second IBM server to the backup District office site. Oracle database and user data will be stored on the primary server and will be duplicated on the second server. In the event of a disaster, either site can serve as backups for the other site.

Besides the primary IBM Enterprise servers, the Banner System includes other supplemental servers for Self-Service CLASS-Web services and Internet Native Banner (INB) servers. Both the CLASS-Web and INB servers have hardware redundancy and application redundancy to be used as backup in the event of an unexpected failure. These backup servers can be swapped out as needed to fully restore these specific Banner services.
Below is a list of IBM systems and ancillary devices supporting SunGard Banner:

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Product Model</th>
<th>Product Serial Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1814</td>
<td>20A</td>
<td>78K0HRN</td>
<td>DS5020</td>
</tr>
<tr>
<td>1814</td>
<td>20A</td>
<td>78K0HR6</td>
<td>DS5020</td>
</tr>
<tr>
<td>1814</td>
<td>52A</td>
<td>78K0HR7</td>
<td>DS5020</td>
</tr>
<tr>
<td>1814</td>
<td>52A</td>
<td>78K0HR8</td>
<td>DS5020</td>
</tr>
<tr>
<td>7014</td>
<td>T42</td>
<td>00FCE6C</td>
<td>System Rack</td>
</tr>
<tr>
<td>7014</td>
<td>T42</td>
<td>00FCE7C</td>
<td>System Rack</td>
</tr>
<tr>
<td>7042</td>
<td>CR5</td>
<td>00DCF5B</td>
<td>HMC Console</td>
</tr>
<tr>
<td>7042</td>
<td>CR5</td>
<td>00DCF6B</td>
<td>HMC Console</td>
</tr>
<tr>
<td>7316</td>
<td>TF3</td>
<td>001525M</td>
<td>HMC Display</td>
</tr>
<tr>
<td>7316</td>
<td>TF3</td>
<td>001536M</td>
<td>HMC Display</td>
</tr>
<tr>
<td>9117</td>
<td>MMA</td>
<td>006B1D5</td>
<td>p770</td>
</tr>
<tr>
<td>9117</td>
<td>MMA</td>
<td>006B1E5</td>
<td>p770</td>
</tr>
<tr>
<td>7029</td>
<td>6C3</td>
<td>00153DA</td>
<td>PSERIES 615 (BW3)</td>
</tr>
<tr>
<td>7029</td>
<td>6C3</td>
<td>00760EE</td>
<td>PSERIES 615 (BW4)</td>
</tr>
<tr>
<td>7208</td>
<td>345</td>
<td>00U1793</td>
<td>EXTERNAL 8MM TAPE DRIVE</td>
</tr>
<tr>
<td>7043</td>
<td>140</td>
<td>93817</td>
<td>workstation Server (DHCP)</td>
</tr>
<tr>
<td>8203</td>
<td>E4A</td>
<td>00C9B51</td>
<td>IBM SYSTEM P 520 (BW5)</td>
</tr>
<tr>
<td>3582</td>
<td>L23</td>
<td>1311111</td>
<td>ULTRIUM TAPE LIBRARY</td>
</tr>
<tr>
<td>3581</td>
<td>H17</td>
<td>7805178</td>
<td>ULTRIUM TAPE AUTOLOADER</td>
</tr>
<tr>
<td>8203</td>
<td>E4A</td>
<td>007116</td>
<td>IBM SYSTEM P 520</td>
</tr>
<tr>
<td>7208</td>
<td>345</td>
<td>00U2027</td>
<td>EXTERNAL 8MM TAPE DRIVE</td>
</tr>
<tr>
<td>7208</td>
<td>345</td>
<td>00U0407</td>
<td>EXTERNAL 8MM TAPE DRIVE</td>
</tr>
<tr>
<td>7208</td>
<td>345</td>
<td>00U1816</td>
<td>EXTERNAL 8MM TAPE DRIVE</td>
</tr>
<tr>
<td>3582</td>
<td>L23</td>
<td>11350</td>
<td>LTO4 Tape Library</td>
</tr>
<tr>
<td>8203</td>
<td>E4A</td>
<td>A6D55</td>
<td>IBM System P 520</td>
</tr>
</tbody>
</table>
IBM ORACLE DATABASE

The Banner system utilizes Oracle as the database engine. The production Oracle database is stored on mirrored disk drives. In the event of a drive failure, the companion drive in the mirrored pair keeps working, thereby providing exceptional fault tolerance. Redundant disk controllers, disk power supplies, I/O channels, and Ethernet interfaces have been implemented. Further, the IBM includes a self-diagnosis and monitoring feature that warns of impending hardware problems.

Several test databases, which are a replica of the full production database are maintained. Each test database is refreshed or copied periodically from the production database. All system-critical events are evaluated on the test database prior to application to the production database.

A variety of tools to monitor and control operational conditions has been developed and is used. These tools help guide actions of the Database Administrator and protect the integrity of the database. District ITS is currently in the process of implementing “hot” backups using RMAN as a new feature in addition to the traditional full “cold” backups. In addition, Dataguard will be installed in the future to provide automatic database shadowing and replication between the two IBM servers.

SERVERS

The CLPCCD District ITS department manages CLPCCD’s administrative servers. These servers provide: distributed file, print, World Wide Web, Intranet, extranet, e-mail, collaboration, data archival, virus protection, and business and student administrative services for the staff and faculty. The ITS department has stayed with a heterogeneous networking strategy to leverage the strengths of each vendors’ Network Operating System (NOS). This allows broad, robust and secure networking services to all of the end users. This strategy also creates a flexible foundation at the network core on which to construct the addition of future networking services.

The main goal of the servers and the applications is to provide the administrative support and tools to the staff and faculty that are necessary for the ongoing business efforts of the colleges. CLPCCD ITS and College computer support staff have now standardized on a server hardware platform. Hewlett Packard is the current standard server manufacturer used. Specifications are as follows:

- rack mount
- dual power supply
- hardware RAID-5
- hot swappable serial ATA disk drives
- dual CPU
- 4 GB memory per processor
- Minimum of 4 hard drives, 3 needed for RAID-5
- CD/DVD
- 2 network cards (10/100/1000)
- 2 USB ports
- 8am-5pm contract services coverage, next day, M-F
- Hard drive spares

CLPCCD District ITS staff continues to leverage the inherent values of specific operating systems to exploit their strengths for delivered functionality, ease of management and integration, security, and cost effectiveness in their environment. This requires running a network based upon open-standards to ensure maximum integration and operability between the systems. CLPCCD District ITS servers run a mix of Novell Netware, IBM AIX, Microsoft Windows 2003 Server, and Linux to deliver all of the core network services and applications that are required and in use on the network today.

Third party software products that provide supplemental services to the Banner System continue to be supported in partnership between the colleges and ITS. These include: (1) Sars-Trak and Stars which are products that track visits to Student Services as well as student contact hours for courses such as labs, learning resources, and tutoring to take attendance in these instructional areas, (2) Sars-Grid that tracks counseling and student scheduling contact hours, (3) Image Source software, which scans transcripts and stores the data for retrieval or updates, (4) GoPrint, a pay-for-print management system that has been installed at both colleges, primarily in the computer labs, libraries and resource centers and allows users to prepay for printed documents and provides management reporting of activity.
The following servers provide administrative services to all the district sites shown below:

Please note that for security purposes, selected charts and tables with sensitive information have been blanked out in this “general version” of the Disaster Recovery plan. **This information is available for viewing upon request to the Chief Technology Officer.**

<table>
<thead>
<tr>
<th>Server</th>
<th>Main Function</th>
<th>Hardware</th>
<th>OS</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E-Mail/Collaboration

CLPCCD uses Novell GroupWise 7.0 as the e-mail and collaboration system. Users include the ITS department, faculty and administration at both Chabot and Las Positas campuses as well as the District staff. This e-mail system does not serve the student population. The District has outsourced e-mail for students using Google Gmail for the student’s ZONEMAIL.

Various modules are implemented in the current setup including: Web-Access, Document Management (GWDMS), Instant Messaging (GWIM) and POP3/IMAP mail services. The ITS department is responsible for all systems maintenance, which includes but is not limited to: user mailbox management, message queue management, and enforcing the 90-day mail purge procedure which must be manually run and monitored. This latter process assures that adequate disk space is available on the mail servers for the next quarter’s incoming and stored mail.

Below shows the Groupwise post offices:

Please note that for security purposes, selected charts and tables with sensitive information have been blanked out in this “general version” of the Disaster Recovery plan. This information is available for viewing upon request to the Chief Technology Officer.

<table>
<thead>
<tr>
<th>Post Office</th>
<th>Server</th>
<th>IP Address</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For anti-Spam filtering and anti-virus, Message Architect’s M+ Guardian is deployed. The District ITS staff has standardized on the Linux and Apache-based web services.

Novell’s eDirectory v8.7.3 is used for administrative authentication. This provides heightened security for all administrative network users as well as a platform for future systems integration. This system currently supports only secure authentication to Netware services. However, eDirectory was developed with the LDAP protocol and more closely parallels an industry standard LDAP implementation that other prevalent directory service implementations.
Currently Chabot, Las Positas, & the District Office are configured as Organizational Units (OU) within a single tree. The tree has both geographical and functional organizations at the root. The college OU’s are broken down into functional OU’s at the next level of the tree. District ITS performs directory service upgrades as needed for added functionality.

The servers that are running Netware currently are on version 6.5. Netware has a configured Single Reference timeserver. All other Novell servers act as “secondaries” and receive their time updates from this server. This is the default Novell configuration, and should function adequately with the current number of servers in this environment.

There are no major issues with eDirectory or the tree health. A health check is performed at least twice a month to ensure the DS information is replicating properly throughout the tree. The following table represents the partitioning and replica placement on the Novell servers.

Domain Name Resolution (DNS)/Dynamic Host Configuration Protocol (DHCP)

The Cisco core switches provide DHCP services for administrative PCs at Chabot campus and the District office. A Windows 2003 server provides internal DNS services.

LPC provides internal DNS services as part of the Windows Active Directory services they provide both for instructional and administrative networks. Chabot provides internal DNS services to their instructional network with their Windows Active Directory services.

At Chabot the DNS is provided by the ChabotDCA and ChabotDCB servers. DHCP is provided by ChabotDCA. ChabotDCB is configured with DHCP and can be brought online manually if ChabotDCA fails. All desktops on the Instructional and Faculty networks point to these servers.

The Davis server provides secondary DNS for the Chabot instructional networks. Davis is queried if DNS entries are not found in the Chabot Instructional Windows ADS Domain Controllers.

At LPC, the DNS is configured on multiple servers on the Instructional network. DNS and DHCP are served by Alice (primary) and Taz (Secondary). All desktops on the Instructional, Faculty and Administrative networks point to these servers.

Iserver and Porter provide external DNS services. As CLPCCD’s authoritative DNS server, this system updates the DNS servers at the ISP as to the District’s externally advertised systems. It is currently running BIND 9.2 which is a secure version of DNS patched against well-known DNS vulnerabilities.

File Sharing

The Novell and Windows 2003 servers handle the file sharing for the administrative desktops. Servers are located at all three sites to handle the local users’ home directories, as well as provide disk space for shared folders.
Backup Strategy

A comprehensive backup solution is essential in ensuring timely recovery of critical user information in the event of accidental deletion, hard drive crashes and corruption, security breaches, and natural disasters. Non-existent or inadequate backup capability can be very expensive due to loss of productivity, time spent re-entering data, and permanent loss of critical information.

A suite of hardware and software products have been implemented to meet CLPCCD's business continuity and disaster recovery requirements. At Chabot, LPC, and District office, Hewlett Packard (HP) high-capacity disk-to-tape and disk-to-disk hardware and Syncsort, Inc., Backup Express software has been installed.

HP disk-to-tape and disk-to-disk hardware provide the medium to backup and restore critical user data (e-mail, documents, web files, applications) to high-capacity tapes, which will be stored on-site for fast restoration and off-site for disaster recovery.

Backup Express is integrated with the HP hardware and provides a web based enterprise-level software that centrally manages the scheduling of data backups, restoration, and cataloguing of backup and restoration jobs. Backup Express supports CLPCCD's heterogeneous operating system platforms: Novell Netware, Linux, and Windows servers.

Additionally Reload software, which provides a real-time backup and restoral of e-mail messages, calendar, and appointments is deployed. Reload is capable of restoring single messages or entire mailboxes and to recover deleted e-mail in minutes.

The backup strategy uses a multi-tiered approach that enhances backup performance and optimizes recoverability when restoration is required.

The strategy is as follows:

File consolidation – Using Novell’s server consolidation utility, files can be transferred at raw speeds from server to server. The utility copies entire volumes or specific directories to one or more destination servers in the same Novell eDirectory tree or in different Novell eDirectory trees. The accompanying rights, trustees, ownership and namespace information are copied to the destination server along with the files. This utility is used to move files from server to server.

Disk-to-secondary disk using virtual tape - The initial backup process will perform a disk-to-secondary disk using virtual tape. This proceeds very rapidly and immediately creates an online backup of the data. If a file is lost or deleted, it can be quickly restored from the secondary disk.

Disk-to-Tape archive – This backup method requires a transfer of the data from the Backup Disk to removable tape media. Backup to tape is usually a lengthy process, scheduled for overnight processing. As storage volumes increase, it becomes impossible to back everything up overnight. Also, if the backup fails for any reason, the staff is not onsite to perform recovery and initiate a new backup. By performing a backup from the secondary disk volume, the backups
can be run during the daytime, when they can be monitored by CLPCCD technical staff.

Backup Locations - For disk-to-tape archival, tape backup hardware and software are installed at the District Office, Chabot College, and Las Positas College. Tape archival would be performed at LAN speed. For disk-to-secondary disk backup, the storage server can be located in a central location. In this case, backups could be performed across the WAN during non-business hours.

Backup Hardware

There are several hardware solutions that can be used for tape backup. LTO backup solutions are the preferred storage for CLPCCD. They offer the best storage density/performance for the size of the disks on the CLPCCD servers, with expansion for the future. The LTO units can be procured as internal or external drives to be added to the servers discretely.

Disk-to-tape:
For the District Office, the HP Ultrium 960 is deployed. For Chabot and Las Positas colleges, the HP Ultrium 960 auto loader carousel are installed. The HP Ultrium tape drive is a SCSI device that would need to be attached to a new or existing server.

Disk-to-Secondary Disk:
For disk-to-secondary disk hardware, the HP StorageWorks 1000i Virtual Library System (VLS1000i) is deployed. The VLS1000i is a disk-based storage solution that provides unattended backup and rapid restores of user data. This is accomplished by emulating a tape drive device and creating virtual tape drives stored on disks. The VLS1000i uses iSCSI (gigabit Ethernet) connectivity, and it can perform simultaneous backup of multiple servers. Restoring data from the virtual tape drives takes much less than restoring from physical tapes. The virtual tape drives stored on disk will be archived to tapes for storage offline.

Backup Software

Syncsort’s Backup Express software is the installed backup software. The software is YES! Certified with Novell SUSE® LINUX Enterprise Server 9, Service Pack 1 and Open Enterprise Server (OES) Linux. Backup Express offers data protection for clustered OES environments and offers more backup and recovery features for SLES and OES than any other software vendor. Backup Express includes protection for NSS (Novell Storage Services) volumes and properties on OES and SLES9 systems, and allows users to backup data on NetWare today, and restores it to OES LINUX after they migrate. While offering a superior feature set, this solution is also higher priced that other backup products.

While Backup Express is essential for backing up data stored on Novell network folders, Novell GroupWise e-mail requires a separate backup system. To backup and provide a hot spare for the GroupWise e-mail system throughout the district, Reload software is installed. Reload is a hot backup and restore solution that allows restoring single messages or mailboxes and recover deleted e-mail in minutes. Reload is specifically designed for Novell GroupWise. A dedicated
Linux-based server is required to host the software.

Backup Express is used to backup the Reload server and Linux servers used for network management.

The following table summarizes hardware and software solution suites for all sites:

<table>
<thead>
<tr>
<th>Location</th>
<th>Hardware</th>
<th>Software</th>
</tr>
</thead>
</table>
| LPC (ITS Data Center) | • HP Ultrium 960
 | • HPVLS100i
 | • HP servers(qty 2) | • Backup Express
 | • Backup Express
 | • Reload
 | • Linux |
| Chabot | • HP Ultrium 960
 | • HP server (qty 1) | • Backup Express |
| DO | • HP Ultrium 960
 | • HP server (qty 1) | • Backup Express |

Backup Schedules

IBM Banner System: The operations staff backs up the IBM server data (including Banner) nightly Monday through Thursday incrementally with full backups performed every Friday. Moreover, the full backup done on the last Friday of the month is retained for one year. These backups are stored in the ITS operations room. The Friday night backups are taken offsite to the District office each Monday and brought back the following Monday on a rotational basis.

E-Mail and User Data: The table below shows the servers and volumes and the backup schedules:

Please note that for security purposes, selected charts and tables with sensitive information have been blanked out in this “general version” of the Disaster Recovery plan. **This information is available for viewing upon request to the Chief Technology Officer.**
VIII. ITS Contact Information

ITS Emergency Contact Information

Chabot • Las Positas Community College District
Information Technology Services

MEMORANDUM

To: Rich Butler, LPC Safety
 Ruben Pola, Chabot Safety
 Tim Nelson, M&O
From: Theresa Hirstein, ITS Operations
Date: July 21, 2010
Subject: Updated ITS Emergency Call List

In the event of an off-hours emergency affecting computer service or equipment, ITS must be notified as soon as possible. Examples of such emergencies include:

- Power failure, flooding
- Fire, fire alarm or fire suppression system discharge
- Break-in, theft, or other intrusion
- Temperature alarms for LPC ITS Data Center

Please note that for security purposes, selected charts and tables with sensitive information have been blanked out in this “general version” of the Disaster Recovery plan. (Home phone numbers are blanked out.)

For other emergency warranting immediate action:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Home</th>
<th>Work</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ken Agustin</td>
<td>925-424-1723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AJ Machaevich</td>
<td>925-424-1722</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theresa Hirstein</td>
<td>925-424-1745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mark Smyth</td>
<td>925-424-1751</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eric Stricklen</td>
<td>925-424-1739</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stacey Followill</td>
<td>925-424-1735</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cathy Gould</td>
<td>925-424-1737</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeannine Methe</td>
<td>925-424-1720 (LPC)</td>
<td>925-485-5213 (DO)</td>
<td></td>
</tr>
</tbody>
</table>

When the need arises, please initiate contact with the first name on the list and continue downward until a contact is made regardless of the time of the alarm. Please leave a message on any answering machine encountered.
Chabot College M&O Contact Information

The memo below lists M&O Chabot emergency contact information:

CHABOT-LAS POSITAS COMMUNITY COLLEGE DISTRICT
MAINTENANCE AND OPERATIONS DEPARTMENT

MEMORANDUM

TO: Robert Curry
FROM: Tim Nelson
DATE: March 21, 2007
SUBJECT: M. & O. Emergency Recall List for the Chabot Campus

Please advise your security personnel that these are the M. & O. personnel that can be called in case of an emergency at Chabot on weekends or holidays. Call supervisors first, then work down the appropriate list, depending on the type of problem.

Please note that for security purposes, selected charts and tables with sensitive information have been blanked out in this “general version” of the Disaster Recovery plan. (Home phone numbers are blanked out).

Maintenance Emergencies: (Heating/Air conditioning, no power, systems failure in buildings, broken water pipes, swimming pool problems, etc.)
Jim Soles Maintenance Manager
Allan Ambrecht Maintenance Supervisor
Robert Holleman HVAC Maintenance Engineer
Virgil Calixto HVAC Maintenance Engineer
Jesse Ellis Hardware Specialist

Grounds Emergencies: (Broken irrigation line, fallen trees, support for athletic events, etc.)
Tom Fuller Grounds Manager
Stan Barnes Grounds Supervisor
Steve Patchin Lead Grounds Worker

Custodian Emergencies: (Spills, custodial support for events, etc.)
Royce Wood Custodial Supervisor
Liz DeLeon Custodial Supervisor
Linda Franco Custodial Lead
Don Benson Custodial Lead
Benito Aquino Custodial Lead
Richard Duchescherer Custodial Manager

Vehicle Emergencies: (District Vehicles)
Rob Barattino Maintenance Mechanic

If they are unable to reach appropriate personnel above, call Tim Nelson, Director of Maintenance and Operations, at.
LPC M&O Contact Information

The memo below lists M&O LPC emergency contact information:

CHABOT-LAS POSITAS COMMUNITY COLLEGE DISTRICT
MAINTENANCE AND OPERATIONS DEPARTMENT

MEMORANDUM

TO: Bob Kratochvil
FROM: Tim Nelson
DATE: March 21, 2007
SUBJECT: M. & O. Emergency Recall List for the Las Positas Campus

Please advise your security personnel that these are the M. & O. personnel that can be called in case of an emergency at Las Positas on weekends or holidays. Call the first person on the appropriate list and then work down the list depending on the type of problem.

Please note that for security purposes, selected charts and tables with sensitive information have been blanked out in this “general version” of the Disaster Recovery plan. (Home phone numbers are blanked out).

Maintenance Emergencies: (Heating/Air conditioning, no power, systems failure in buildings, broken water pipes, etc.)
- Jim Soles: Maintenance Manager
- Chuck Bender: Maintenance Supervisor
- Robert Holleman: HVAC Maintenance Engineer
- Virgil Calixto: HVAC Maintenance Engineer
- Jesse Ellis: Hardware Specialist

Grounds Emergencies: (Broken irrigation line, fallen trees, support for athletic events, etc.)
- Stan Barnes: Grounds Supervisor
- Tom Fuller: Grounds Manager
- Carl Yamasaki: Lead Grounds Worker

Custodial Emergencies: (Spills, custodial support for events, etc.)
- Sharon Keick: Custodial Supervisor
- Donald Saugar: Custodial Lead
- Joseph Pimental: Custodial Lead
- Richard Duchscherer: Custodial Manager

Vehicle Emergencies: (District Vehicles)
- Rob Barattino: Maintenance Mechanic

If they are unable to reach appropriate personnel above, call Tim Nelson, Director of Maintenance and Operations, at .
IX. DISASTER RECOVERY PROCEDURES FOR IT INFRASTRUCTURE AND FACILITIES

Disaster Recovery Procedures for LAN/MAN

In the event of a disaster, LAN/WAN equipment could be damaged and become inoperable. CLPCCD standardized on Cisco network equipment. The table below lists the equipment, serial number, contract number, and the maintenance agreement purchased:

Please note that for security purposes, selected charts and tables with sensitive information have been blanked out in this “general version” of the Disaster Recovery plan. This information is available for viewing upon request to the Chief Technology Officer.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Serial Number</th>
<th>Contract</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS-C4506-S2+96</td>
<td>Catalyst 4560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR-CT5508-50-K9</td>
<td>Wireless Controller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-C4506-S2+96</td>
<td>Catalyst 4560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-C4506</td>
<td>Catalyst 4560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-C4506-S2+96</td>
<td>Catalyst 4560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-C4506</td>
<td>Catalyst 4560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-C4506-S2+96</td>
<td>Catalyst 4560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-C4506</td>
<td>Catalyst 4560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIX-515E-R-BUN</td>
<td>Firewall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIX-515E-R-DMZ-BUN</td>
<td>Firewall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIX-515E-UR-FE-BUN</td>
<td>Firewall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIX-515E-UR-FE-BUN</td>
<td>Firewall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CISCO2811</td>
<td>Router</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-C6509-E</td>
<td>Catalyst 6509 Core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-C6509-E</td>
<td>Catalyst 6509 Core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-C6509-E</td>
<td>Catalyst 6509 Core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CISCO3825</td>
<td>Router</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CISCO3825</td>
<td>Router</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-C6509-E-PFC2</td>
<td>Catalyst 6509 Core</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If Cisco equipment and parts need to be replaced and ordered, call Cisco Technical Assistance Center (TAC) at 800-553-2447. Serial number and contract number must be provided. Cisco TAC can also assist in troubleshooting network-related issues.

Cisco IOS images and switch/router configurations are stored on data servers. If a router or switch needs to be replaced, the images and configurations can be downloaded via TFTP.

If a disaster occurs, there is also a possibility of damage to the campus fiber infrastructure. Call a cabling vendor, either SASCO or CalCoast. See vendor contacts in Appendix F which contains the list of maintenance contracts and designated contacts.

Telecommunications circuits that connect the campuses and District Office can also be impacted. If this is the case, AT&T, needs to be notified and a trouble call logged. The table below lists the circuit identification numbers of Opt-E-Man and T-1 circuits. This information is needed when calling AT&T.

Please note that for security purposes, selected charts and tables with sensitive information have been blanked out in this “general version” of the Disaster Recovery plan. This information is available for viewing upon request to the Chief Technology Officer.

<table>
<thead>
<tr>
<th>Description</th>
<th>Circuit ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPC Opt-E-Man</td>
<td></td>
</tr>
<tr>
<td>District Office Opt-E-Man</td>
<td></td>
</tr>
<tr>
<td>Dublin Opt-E-Man</td>
<td></td>
</tr>
<tr>
<td>LPC-District Office T-1</td>
<td></td>
</tr>
<tr>
<td>LPC-Chabot #1 T-1</td>
<td></td>
</tr>
<tr>
<td>LPC-Chabot #2 T-1</td>
<td></td>
</tr>
<tr>
<td>LPC-Chabot #3 T-1</td>
<td></td>
</tr>
<tr>
<td>Chabot-District Office T-1</td>
<td></td>
</tr>
</tbody>
</table>

For Opt-E-Man outages, call AT&T at (888) 644-3662. For T-1 outages, call AT&T at (800) 332-1321.

For outages impacting the colleges’ Internet connections, call the CLPCCD’s service provider, CENIC, at (744) 220-3494 and log a trouble call.
X. DISASTER RECOVERY PROCEDURES FOR IBM/Oracle Database

The following standards are designed to reduce the mean time required to recover from service interruptions:

- **Documentation**: Copies of this plan are maintained at LPC ITS Operations Bldg 1900, room 131. Copies of all ITS-authored documentation are maintained in the Print Production room, on data servers, and on backup tapes.

- **Hardware and Software Maintenance Contracts**: ITS has contracted for maintenance service from IBM and Oracle with on-site premium service, 7x24.

- **Mutual Assistance Agreement**: The District has entered into a mutual assistance service agreement with the San Mateo County Community College District, which also uses the SCT Banner applications. The agreement pledges mutual assistance, cooperative support, sharing of technical resources, computer services, and staff resources in order to help mitigate the effects of any catastrophic failure of computer services caused by disaster at either district. Refer to Appendix A for a copy of the agreement.

- **Consulting Agreements**: The District maintains consulting services agreements with IBM, CMI, Sungard Higher Education, and Strata Information Group. Under these agreements, specialized implementation assistance can be quickly obtained when required to speed up recovery from a service interruption.

- **Technical currency**: All of the mission-critical systems operate at currently supported release levels and run on currently available hardware and unmodified operating systems. Accordingly, in the event of catastrophic loss, our database and applications can be re-implemented quickly on replacement hardware and operating systems.

- **Staff preparation**: ITS has identified a well-trained systems administrator responsible for operation of the IBM system and a database administrator responsible for managing and maintaining the Oracle database.

- **Database backups**: Several types of backups for the Oracle database are maintained:
 - Physical File Backups. These are performed weekly, monthly, and annual full backups of all file systems with the database in a “cold” or shutdown state. Nightly incremental backups of changes since the last full backup are also performed.
 - Archive logging. The production database is run in the ARCHIVELOG state to capture all transactions to a log file. Certain Oracle tools permit use of these logs to recover the database to a specific point in time, or to recover all activity since the last cold backup. This will permit recovery of all database activity up to the minute of system failure.
- Database exports. A logical export of the database is periodically done to an export dump file, which can be used to restore the database. This provides a different type of backup and a greater degree of security.
- Test database. A test database that is a replica of the full production database is maintained. It is refreshed or copied periodically from the production database. Although it is not designed as a backup tool, the test database provides an additional on-line copy.
- Database mirroring. Disk mirroring, although not sufficient as a sole backup strategy, offers an excellent recovery from disk failure and provides an additional up-to-the-minute backup copy of the production database.

Refer to Appendix B for IBM startup and shutdown procedures.

Refer to Appendix C for instructions on how to shutdown the Oracle database in an emergency.
XI. DISASTER RECOVERY PROCEDURES FOR HP SERVERS

CLPCCD has standardized on Hewlett-Packard (HP) servers running Novell Netware, Windows 2003, or Linux operating systems. These servers host critical applications such as web services, e-mail, data storage, and Banner-related applications.

Spare HP servers and hard drives have been provisioned and are readily available. Each server is configured with four hard drives or more at RAID-5 level. If one hard drive fails, it can be replaced without bringing the server down. Additionally each server is configured with dual power supplies and network cards for added redundancy.

In the event that servers or components need to be ordered, they are under warranty and service has been purchased at 8x5xNBD. Call HP technical support center at (800) 334-5144.

The table below lists the servers with the serial numbers, which must be provided to log a trouble call.

Please note that for security purposes, selected charts and tables with sensitive information have been blanked out in this “general version” of the Disaster Recovery plan. **This information is available for viewing upon request to the Chief Technology Officer.**

<table>
<thead>
<tr>
<th>Server Name</th>
<th>Hardware</th>
<th>Serial No</th>
<th>Asset No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Restoration of operating system and applications software is the next step after acquiring a new server. Novell operating system and applications can be reinstalled using installation CDs. Windows server operating system and applications can be reinstalled in a two-step process. First, the core Windows server operating system is installed using CDs. Once the core operating
system is installed, Windows NT Backup software, restore option, is used to recover the applications and data from tape or disk. In the future, bit-level, bare-metal recovery imaging will be used as it is more efficient and less time consuming.

Refer to Appendix D for the disaster recovery plan for each server.

E-MAIL AND USER DATA RECOVERY

E-mail and user data are recoverable using Syncsort Backup Express recovery software. The data is either restored from backup tapes or virtual tapes stored on hard disks. E-mail data can also be restored from disks using the Reload software.

Refer to Appendix E for how to recover deleted e-mails using Reload.
XII. INITIATION OF THE DISASTER RECOVERY PLAN

The preceding paragraphs detail CLPCCD’s IT infrastructure and its current state of preparedness in the event of a disaster. The following sections discuss the steps that are undertaken if a disaster occurs.

The first step is the detection and determination of a disaster condition. Depending on the gravity and extent of the disaster, the proper authorities (campus police, Director of Maintenance, etc.) will notify the Chief Technology Officer (CTO) that a disaster has occurred. The CTO (or alternate) assesses the situation and initiates the Disaster Recovery Plan, invokes the phone tree, and notifies the staff members responsible for salvaging and recovering IT assets.

The CTO will identify a designated hot site where salvageable resources and spares will be moved, installed, and configured. If the LPC Data Center is severely impacted and becomes inoperable, the designated hot site will be the District Office’s future backup Data Center. The CTO will manage and coordinate with the appropriate District departments the resources needed to enable the District office as a fully functioning Data Center.

The following table illustrates disaster events that can initiate the DR plan:

<table>
<thead>
<tr>
<th>Event</th>
<th>Responsible</th>
<th>Severity</th>
<th>Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Hardware</td>
<td>• Ops Supervisor: Theresa Hirstein</td>
<td>High</td>
<td>• Hard drive failure</td>
<td>• Replace failed components with available spares</td>
</tr>
<tr>
<td></td>
<td>• System Admin: Eric Stricklen</td>
<td></td>
<td>• Motherboard/CPU failure</td>
<td>• Contact IBM tech support</td>
</tr>
<tr>
<td></td>
<td>• Alternate System Admin: Stacey Followill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM Software and Database</td>
<td>• System Admin: Eric Stricklen</td>
<td>High</td>
<td>• Corrupted file system</td>
<td>• Reinstall software</td>
</tr>
<tr>
<td></td>
<td>• Alternate System Admin: Stacey Followill</td>
<td></td>
<td>• Corrupted database</td>
<td>• Restore from backup tapes</td>
</tr>
<tr>
<td></td>
<td>• Database: Danita Troche</td>
<td></td>
<td></td>
<td>• Contact Oracle or IBM</td>
</tr>
<tr>
<td>Location</td>
<td>Responsible Persons</td>
<td>Minor to Major Impact</td>
<td>Actions Taken</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>-----------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>HP Server Hardware</td>
<td>Eric Stricklen</td>
<td>Mild to High</td>
<td>- Hard drive failure
- Motherboard/CPU failure
- Replace failed components with available spares
- Contact HP tech support</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Systems Manager: Ken Agustin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Admin: Mark Smythe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Admin: Revoyda Starling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novell Data Servers</td>
<td>Ken Agustin</td>
<td>Mild to High</td>
<td>- Corrupted file structure
- Accidental erasure
- Restore from backup tapes or online disk storage
- Reinstall Netware OS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Admin: Mark Smythe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Admin: Revoyda Starling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Mail Data</td>
<td>Ken Agustin</td>
<td>Mild to High</td>
<td>- Accidental erasure
- Hard drive failure
- Restore from Reload
- Restore from backup tapes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Admin: Mark Smythe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Admin: Revoyda Starling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web Server Data</td>
<td>Ken Agustin</td>
<td>Mild to High</td>
<td>- Accidental Erasure
- Hard drive failure
- Restore from backup tapes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Admin: Mark Smythe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Admin: Revoyda Starling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable Failure</td>
<td>Ken Agustin</td>
<td>Mild to High</td>
<td>- Accidental fiber cut
- Sabotage
- Call cabling vendor (SASCO or CalCoast)
- Re-terminate wiring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Admin: Mark Smythe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Admin: Revoyda Starling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Circuit Failure</td>
<td>Ken Agustin</td>
<td>High</td>
<td>- Accidental fiber cut on the WAN cloud
- Call AT&T, report problem, and log case</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Admin: Mark Smythe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Equipment Failure</td>
<td>System Admin: Revoyda Starling</td>
<td>Vendor equipment failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems Manager: Ken Agustin</td>
<td>Mark Smythe</td>
<td>Bad power supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Admin: Mark Smythe</td>
<td>System Admin: Revoyda Starling</td>
<td>Bad circuit board on switch or router</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replace failed component with spare</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Call Cisco technical assistance center (TAC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Outage (brief, transient)</th>
<th>None</th>
<th>Electrical equipment failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>Power fluctuation</td>
<td>None. UPS provides line conditioning and isolation that protects equipment from electrical surges</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Outage (1 to 45 minutes)</th>
<th>None</th>
<th>Loss of city power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>Faulty LPC electrical equipment</td>
<td>None. UPS battery provides power up to 45 minutes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power outage (46 minutes to 12 hours)</th>
<th>ITS Verify remotely systems in operation</th>
<th>Continued loss of city power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild to High</td>
<td>Inability to repair faulty LPC electrical equipment timely</td>
<td>None. The generator automatically kicks in when UPS battery is consumed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power outage (over 12 hours)</th>
<th>ITS Refer to ITS Emergency Contact Information</th>
<th>Continued loss of city power</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td></td>
<td>Contact M&O to fill up generator with diesel fuel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power outage with loss of generator</th>
<th>ITS Refer to ITS Emergency Contact Information</th>
<th>Faulty generator and prolonged power outage with UPS only supplying power</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td></td>
<td>Contact M&O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orderly shutdown of all servers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>After power is restored, restart all</td>
</tr>
</tbody>
</table>
MAINTENANCE AGREEMENTS

A critical aspect of reconstitution when disaster occurs is the ability to summon assistance for technical expertise, troubleshooting, and shipment of spare components from the various hardware, software, and infrastructure vendors and manufacturers. Thus, it is important to ensure maintenance agreements, contracts, and licenses are up-to-date and current. Refer to Appendix F for a list of the maintenance contracts and the designated contacts.
The Management Information Services Department of the Chabot-Las Positas Community College District and the Information Technology and Services Department of the San Mateo County Community College District jointly agree to the following mutual assistance declaration:

Whereas each of the districts use the following SCT Banner software modules for administrative computing:
- Banner Student System
- Banner Finance System
- Banner Human Resources System
- Banner Financial Aid System, and

Whereas Banner software is written in the Oracle database, a database language which is portable and machine-independent, and

Whereas both districts employ staff proficient in the administration of Banner and Oracle,

The Management Information Services Department of the Chabot-Las Positas Community College District and the Information Technology and Services Department of the San Mateo County Community College District hereby pledge to provide mutual assistance, cooperative support, sharing of technical resources, computer services, and staff resources in order to help mitigate the effects of any catastrophic failure of computer services caused by disaster at either district.

Executed August 18, 1993:

William E. Threlfall
Chief Management Information Officer
Chabot-Las Positas Community College District

Frank Vaskellis
Chief Information Officer
San Mateo County Community College District
XIV. Appendix B – IBM Startup and Shutdown Procedures

Please note that for security purposes, selected charts and tables with sensitive information have been blanked out in this “general version” of the Disaster Recovery plan. This information is available for viewing upon request to the Chief Technology Officer.

XV. Appendix C – Oracle Database Shutdown Procedures

Please note that for security purposes, selected charts and tables with sensitive information have been blanked out in this “general version” of the Disaster Recovery plan. This information is available for viewing upon request to the Chief Technology Officer.

XVI. Appendix D – Server Disaster Recovery Plan

Please note that for security purposes, selected charts and tables with sensitive information have been blanked out in this “general version” of the Disaster Recovery plan. This information is available for viewing upon request to the Chief Technology Officer.

XVII. Appendix E – How to Recover Deleted E-Mail Messages

Please note that for security purposes, selected charts and tables with sensitive information have been blanked out in this “general version” of the Disaster Recovery plan. This information is available for viewing upon request to the Chief Technology Officer.

XVIII. Appendix F – Maintenance Contracts

Please note that for security purposes, selected charts and tables with sensitive information have been blanked out in this “general version” of the Disaster Recovery plan. This information is available for viewing upon request to the Chief Technology Officer.

<table>
<thead>
<tr>
<th>Software/Hardware</th>
<th>Vendor</th>
<th>License or</th>
<th>Expiration</th>
<th>Contact Info</th>
</tr>
</thead>
</table>

Chabot-Las Positas Community College “Disaster Recovery Plan”
GENERAL VERSION – NOT ITS VERSION WITH LIMITED DISTRIBUTION
<table>
<thead>
<tr>
<th>Description</th>
<th>Contract#</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>XL C/C++ for AIX User</td>
<td>IBM</td>
<td></td>
</tr>
<tr>
<td>Fluke Networks Etherscope</td>
<td>Fluke Networks</td>
<td></td>
</tr>
<tr>
<td>IBM</td>
<td>Chouinard & Myhre, Inc</td>
<td></td>
</tr>
<tr>
<td>Chabot Microsoft Campus Agreement</td>
<td>ComputerLand</td>
<td></td>
</tr>
<tr>
<td>LPC Microsoft Campus Agreement</td>
<td>ComputerLand</td>
<td></td>
</tr>
<tr>
<td>10kVA Emerson UPS (District)</td>
<td>Gruber Power Services</td>
<td></td>
</tr>
<tr>
<td>Powerware UPS LPC 1900/1900A</td>
<td>Eaton Corp</td>
<td></td>
</tr>
<tr>
<td>Oracle</td>
<td>Oracle</td>
<td></td>
</tr>
<tr>
<td>CurricUNET</td>
<td>Governet C/O Bibby Service</td>
<td></td>
</tr>
<tr>
<td>Student Right To Know</td>
<td>State of California</td>
<td></td>
</tr>
<tr>
<td>eLumen Collaborative software license</td>
<td>Elumen Collaborative</td>
<td></td>
</tr>
<tr>
<td>Google Mail Integration</td>
<td>SunGard</td>
<td></td>
</tr>
<tr>
<td>Blackboard Single Sign On Adapter</td>
<td>SunGard</td>
<td></td>
</tr>
<tr>
<td>SnagIt</td>
<td>TechSmith</td>
<td></td>
</tr>
<tr>
<td>Cobol</td>
<td>Micro Focus</td>
<td></td>
</tr>
<tr>
<td>Fluke Networks Gold Support</td>
<td>Fluke Networks</td>
<td></td>
</tr>
<tr>
<td>FormFusion</td>
<td>evisions</td>
<td></td>
</tr>
<tr>
<td>Intellecheck</td>
<td>evisions</td>
<td></td>
</tr>
<tr>
<td>Pressure Sealer</td>
<td>Peak Technologies</td>
<td></td>
</tr>
<tr>
<td>Crystal Reports Developer/Business Objects</td>
<td>SAP Americas</td>
<td></td>
</tr>
<tr>
<td>M+ Guardian</td>
<td>Messaging Architects</td>
<td></td>
</tr>
<tr>
<td>M+Extranet</td>
<td>Messaging Architects</td>
<td></td>
</tr>
<tr>
<td>Novell Academic License/Zenworks</td>
<td>NovaCoast</td>
<td></td>
</tr>
<tr>
<td>HP8100 printer</td>
<td>Technic Computer Services</td>
<td></td>
</tr>
<tr>
<td>7215 Printronix Band printers</td>
<td>Technic Computer Services</td>
<td></td>
</tr>
<tr>
<td>TCP Maintenance (Student, FinAid,INAS, Finance, HR, Web for students/employees)</td>
<td>Sungard</td>
<td></td>
</tr>
<tr>
<td>2009 Tax Year Service</td>
<td>Pearson Government Solutions</td>
<td></td>
</tr>
<tr>
<td>Web Center Support</td>
<td>Internet Software Science</td>
<td></td>
</tr>
<tr>
<td>Symantec Anti-virus</td>
<td>SHI</td>
<td></td>
</tr>
<tr>
<td>Chabot College.edu DNS</td>
<td>Educause</td>
<td></td>
</tr>
<tr>
<td>LPC.edu DNS</td>
<td>Educause</td>
<td></td>
</tr>
<tr>
<td>SSL</td>
<td>Verisign</td>
<td></td>
</tr>
<tr>
<td>SMARTNET</td>
<td>AT&T</td>
<td></td>
</tr>
<tr>
<td>SMARTNET</td>
<td>AT&T</td>
<td></td>
</tr>
</tbody>
</table>