

LAS POSITAS COLLEGE

Las Positas College
Exterior Wayfinding Project
3000 Campus Hill Drive
Livermore, CA 94551

100% Construction Intent
January 23, 2026

Job 3738

SHANNON LEIGH
STRATEGIC PLACEMAKING

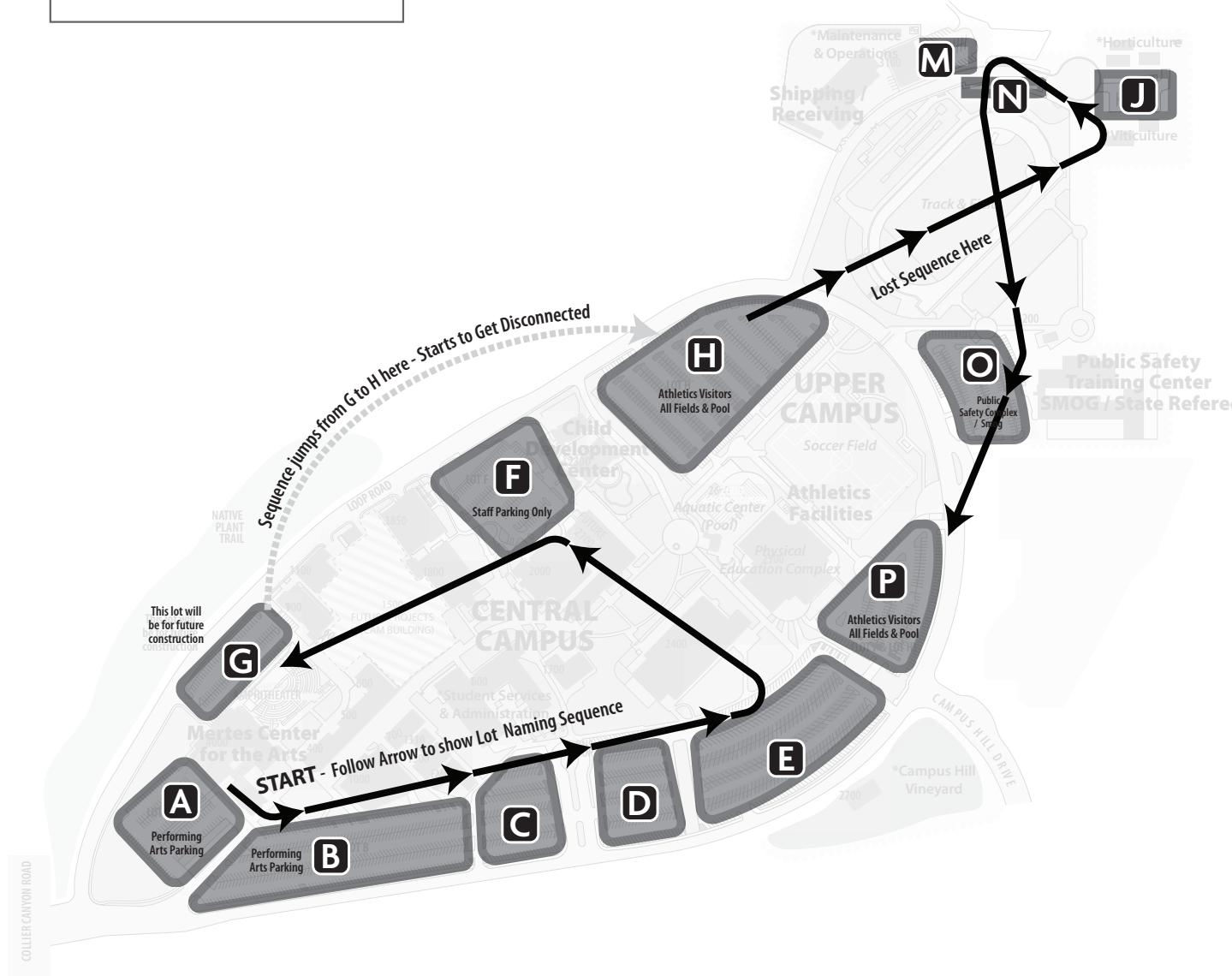
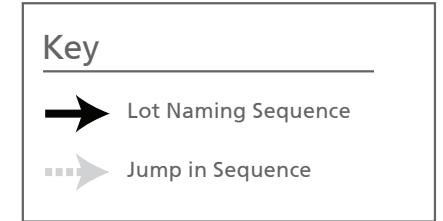
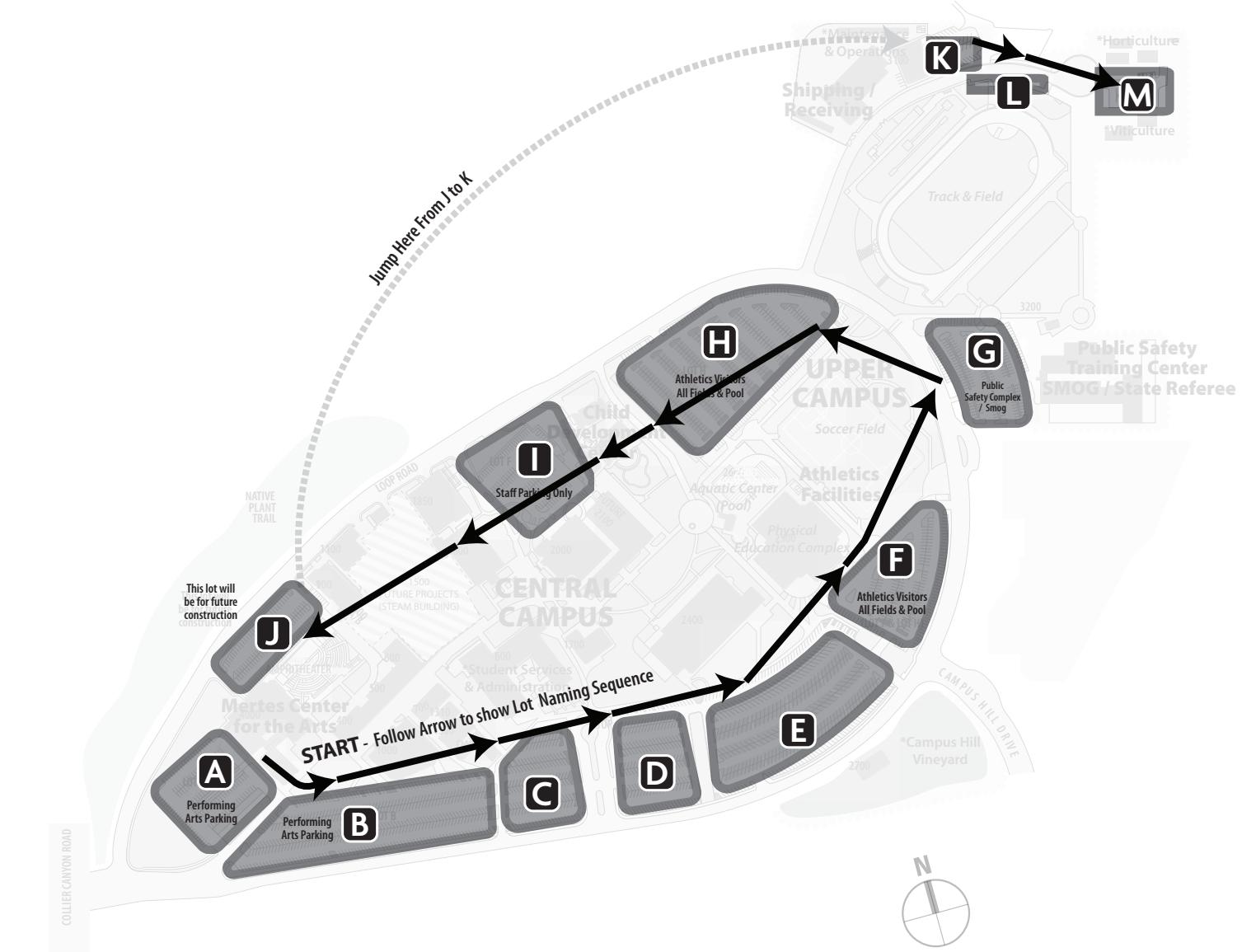


1455 Hays Street San Leandro, CA 94577
510.969.7870 shannonleigh.design

Table of Contents

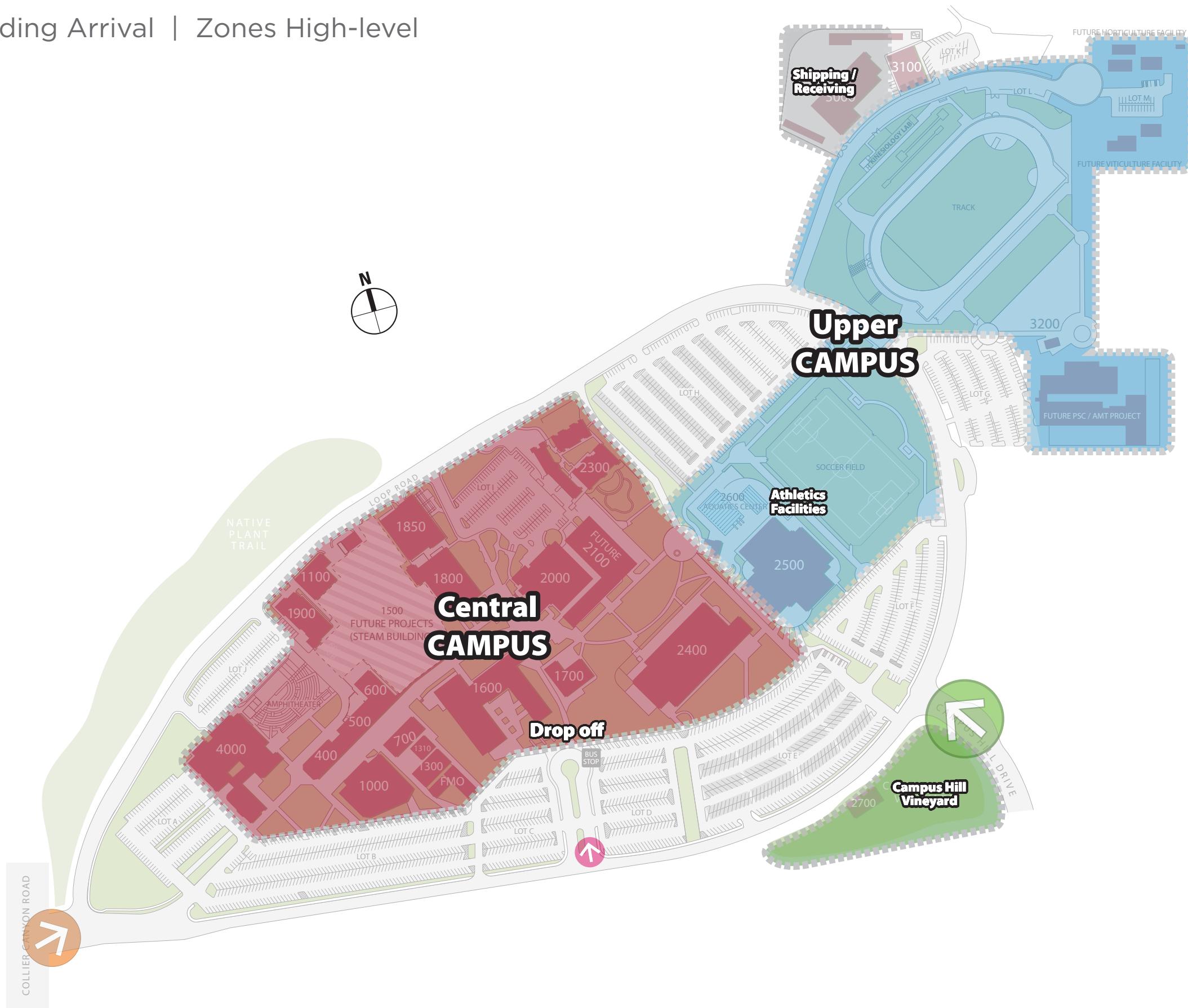
0.2	Parking Lot Renaming
1.1	Circulation & Use Plans
2.1	Vehicular Sign Location Plans
2.12	Pedestrian Sign Location Plans
3.1	Sign Family Overview
4.1	Vehicular Dimensioned Setback Plans
4.6	Pedestrian Dimensioned Setback Plans
5.1	Graphic Standards
6.1	Sign Layouts
7.1	Vehicular Sign Summary and Message Schedule
7.24	Pedestrian Summary and Message Schedule
8.1	Vehicular Sign Removal Plan
9.1	Pedestrian Sign Removal Plan
10.1	Existing Electrical at BR.02
11.1	Engineering Drawings and Calculations



Parking Lot Renaming

Current

The current numbering program is out of sequence. Renaming the lots will solve this and aid wayfinding efforts.


Approved Option

The lot sequence flows from the south end, following the loop in a counter clockwise direction. Then Jumping up the the far north end of the campus.

Client request 2025.06.02

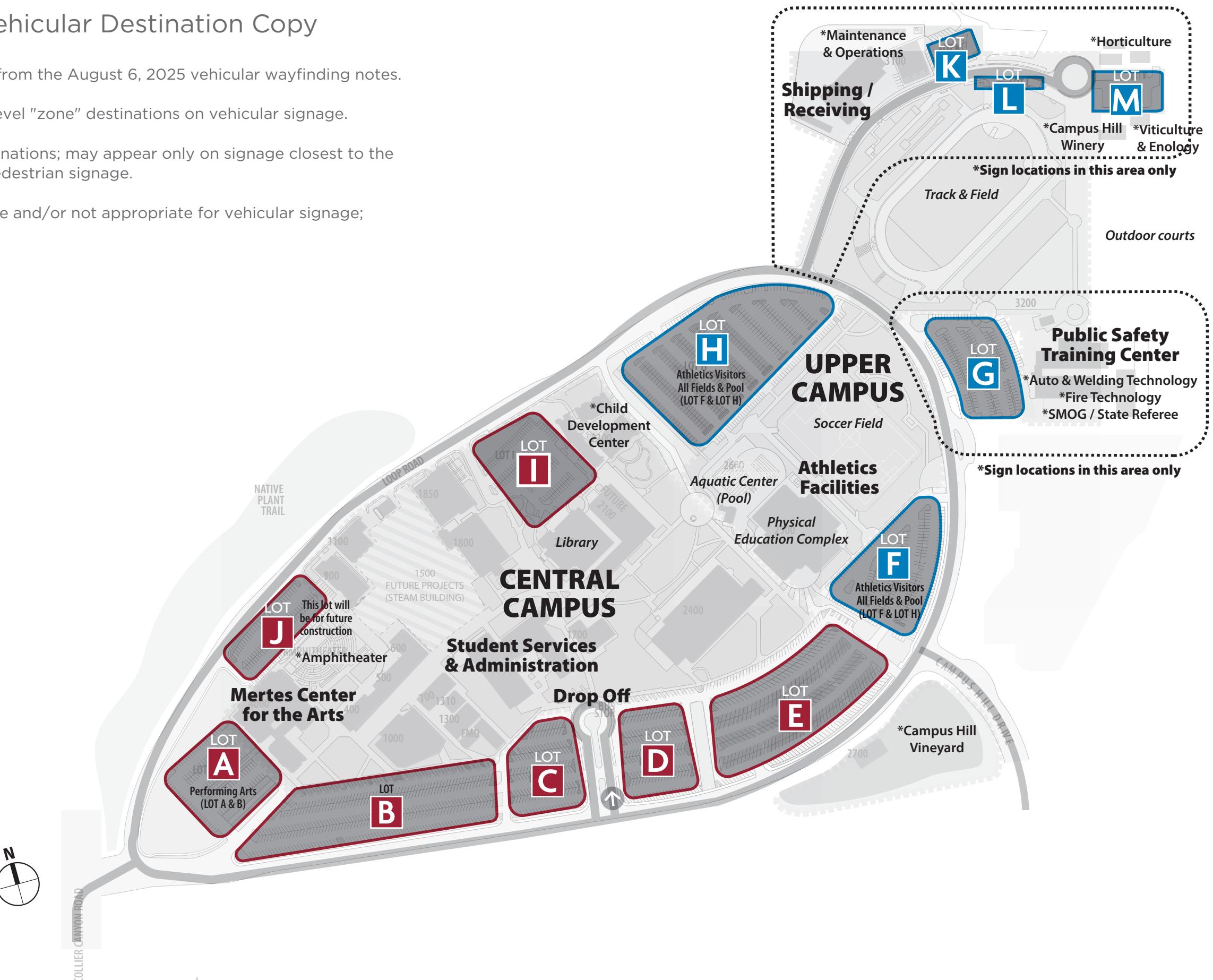
Wayfinding Arrival | Zones High-level

Hierarchy Overview for Vehicular Destination Copy

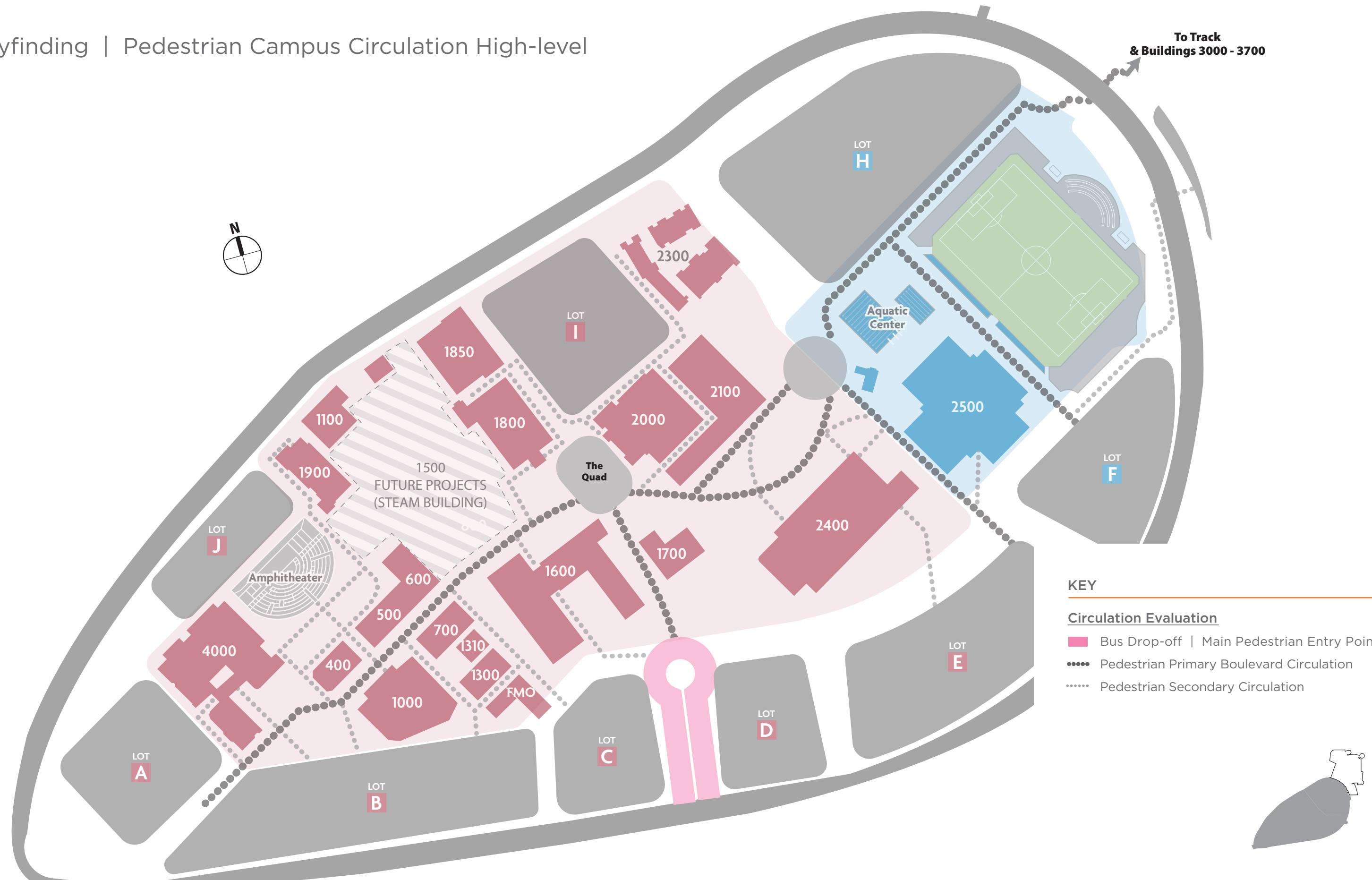
All destination & nomenclature captured from the August 6, 2025 vehicular wayfinding notes.

Bold = Recommended as high-level "zone" destinations on vehicular signage.

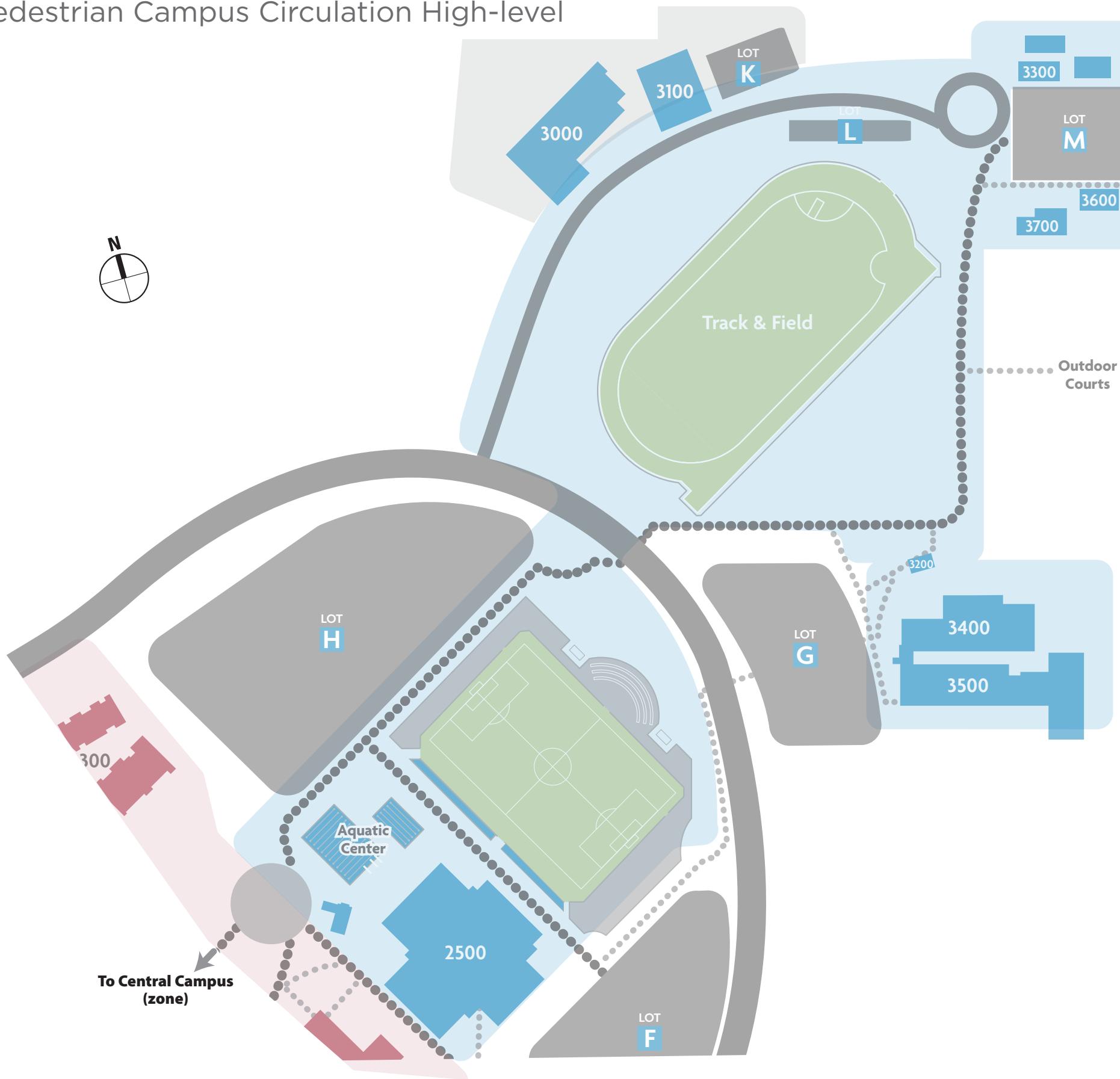
Asterisk (*) = Secondary destinations; may appear only on signage closest to the location (dotted line area) or on pedestrian signage.


Italics = Not accessible by vehicle and/or not appropriate for vehicular signage; will appear on pedestrian signage.

Central Campus
Drop Off
Mertes Center for the Arts
Student Services & Administration

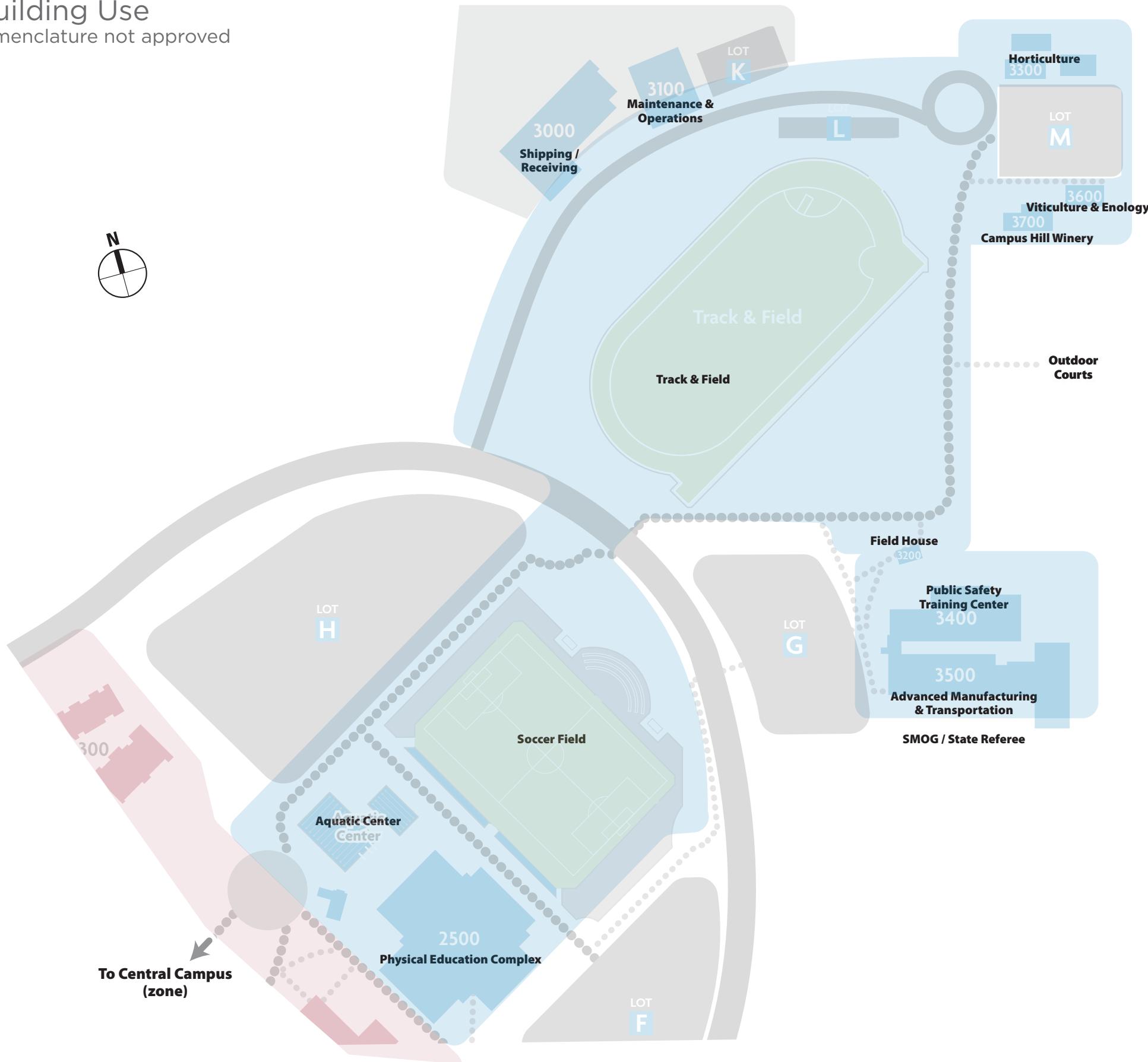

Upper Campus
Athletics Facilities
Public Safety Training Center
Shipping/Receiving

*Amphitheater
*Auto & Welding Technology
*Campus Hill Vineyard
*Campus Hill Winery
*Child Development Center
*Fire Technology
*Horticulture
*Maintenance & Operations
*SMOG / State Referee
*Viticulture & Enology


Aquatic Center (Pool)
Physical Education Complex
Soccer Field
Outdoor Courts
Track & Field

Wayfinding | Pedestrian Campus Circulation High-level

Wayfinding | Pedestrian Campus Circulation High-level


Wayfinding | Building Use

*For reference only - nomenclature not approved

Wayfinding | Building Use

*For reference only - nomenclature not approved

Vehicular Sign Location Plan | Overview

GRAPHIC CONSULTANT:

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
Exterior Wayfinding Project
Job# 3738

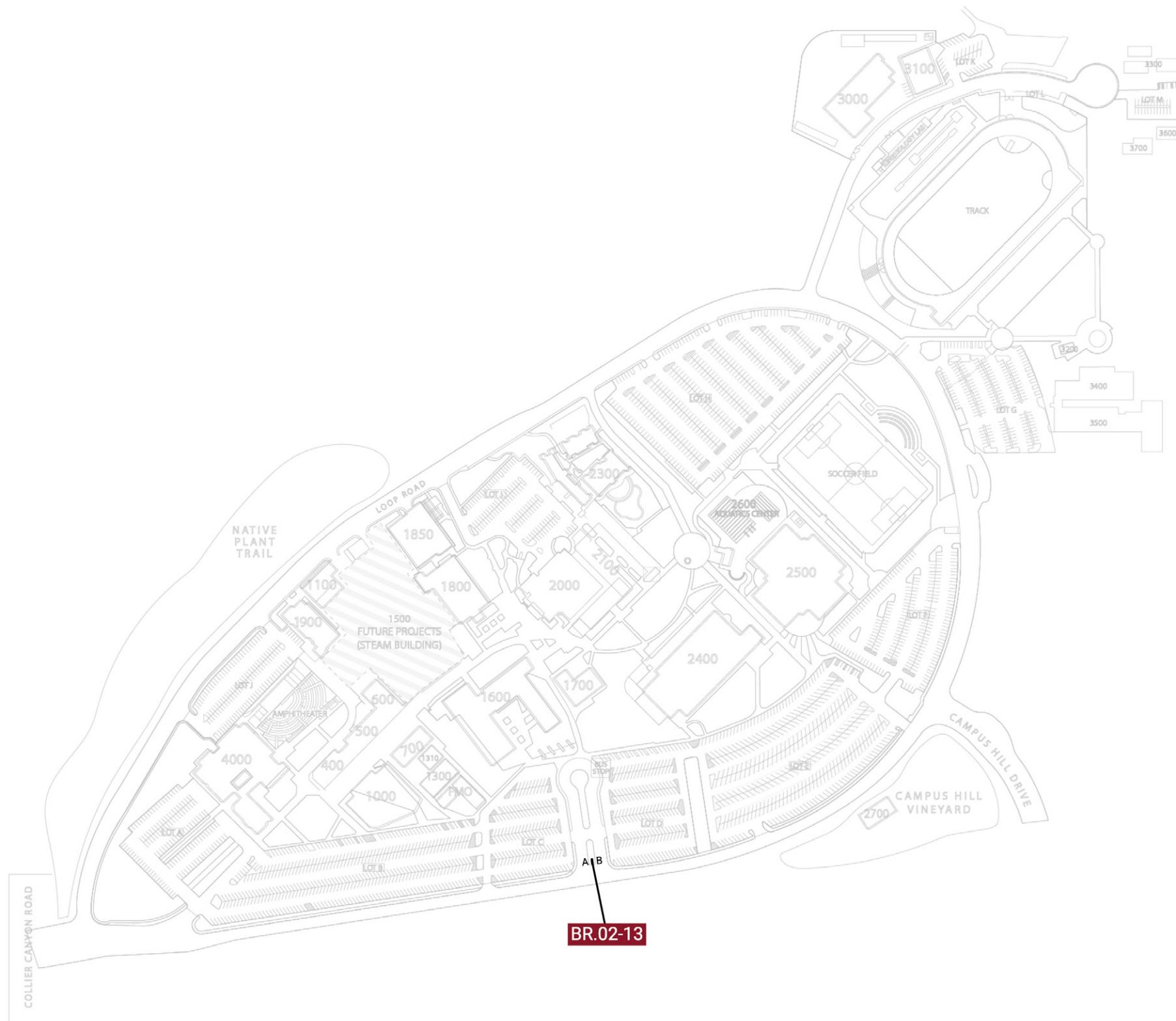
CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
Vehicular Sign Location Plan Overview

KEY


- Brand ID Signs (represented by a dark red square)
- Wayfinding Signs (represented by a green square)
- Identification Signs (represented by a blue square)

PAGE NUMBER:

Vehicular Sign Location Plan | BR.02 Secondary Brand ID

See Page(s): 6.2 - 6.6
For BR.02 Details

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Vehicular Sign Location Plan
BR.02**

PAGE NUMBER:

Vehicular Sign Location Plan | PID.01 Parking Lot ID

See Page(s): 6.24 - 6.29

For PID.01 Details

GRAPHIC CONSULTANT:

SHANNON LEIGH

STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
Exterior Wayfinding Project
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
Vehicular Sign Location Plan
PID.01

PAGE NUMBER:

Vehicular Sign Location Plan | EWF.01A Vehicular Directional at Main Entry Point

See Page(s): 6.7 - 6.12
For EWF.01A Details

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Vehicular Sign Location Plan
EWF.01A**

PAGE NUMBER:

Vehicular Sign Location Plan | EWF.01 Primary Vehicular Directional

See Page(s): 6.13 - 6.18
For EWF.01 Details

GRAPHIC CONSULTANT:
SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
Exterior Wayfinding Project
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
Vehicular Sign Location Plan
EWF.01

PAGE NUMBER:

Vehicular Sign Location Plan | EWF.02 Secondary Vehicular Directional

See Page(s): 6.19 - 6.23

For EWF.02 Details

GRAPHIC CONSULTANT:

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
Exterior Wayfinding Project
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
Vehicular Sign Location Plan
EWF.02

PAGE NUMBER:

[Intentionally Blank]

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:

**Exterior Wayfinding
Project**
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Add Alternate Bid
Vehicular Sign Location Plan
PID.02**

PAGE NUMBER:

2.10

Add Alternate Bid | Vehicular Sign Location Plan

See Page(s): 6.24 - 6.29

For PID.01 Details

See Page(s): 6.13 - 6.18

For EWF.01 Details

See Page(s): 6.19 - 6.23

For EWF.02 Details

Reference Specification Section 01 23 00 for further information for Alternate Bid items

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
Exterior Wayfinding Project

Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only


SHEET TITLE:
Add Alternate Bid
Vehicular Sign Location Plan
PID.01, EWF.01, EWF.02

PAGE NUMBER:

2.11

Pedestrian Sign Location Plan | Central Campus | Overview

1455 Hays Street San Leandro, CA 94577
 510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
 3000 Campus Hill Drive
 Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
 00-00-0000

PROJECT NAME:
Exterior Wayfinding Project

Job# 3738

CREATED BY / DATE:
 MV / 2025_0217

REVISIONS BY / DATE / NOTES:
 MV 2025_0313
 MV 2025_0530
 MV 2025_0822
 MV 2025_1003
 MV 2025_1125
 MV 2025_0123

PROJECT PHASE:
100% Construction Intent
 For Construction Intent Only

SHEET TITLE:
Pedestrian Sign Location Plan
Central Campus
Overview

PAGE NUMBER:

2.13

Pedestrian Sign Location Plan | Upper Campus | Overview

1455 Hays Street San Leandro, CA 94577
 510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
 3000 Campus Hill Drive
 Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
 00-00-0000

PROJECT NAME:
Exterior Wayfinding Project
Job# 3738

CREATED BY / DATE:
 MV / 2025_0217

REVISIONS BY / DATE / NOTES:
 MV 2025_0313
 MV 2025_0530
 MV 2025_0822
 MV 2025_1003
 MV 2025_1125
 MV 2025_0123

PROJECT PHASE:
100% Construction Intent
 For Construction Intent Only

SHEET TITLE:
Pedestrian Sign Location Plan
Upper Campus
Overview

PAGE NUMBER:

Pedestrian Sign Location Plan | Upper Campus cont. | Overview

GRAPHIC CONSULTANT:

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

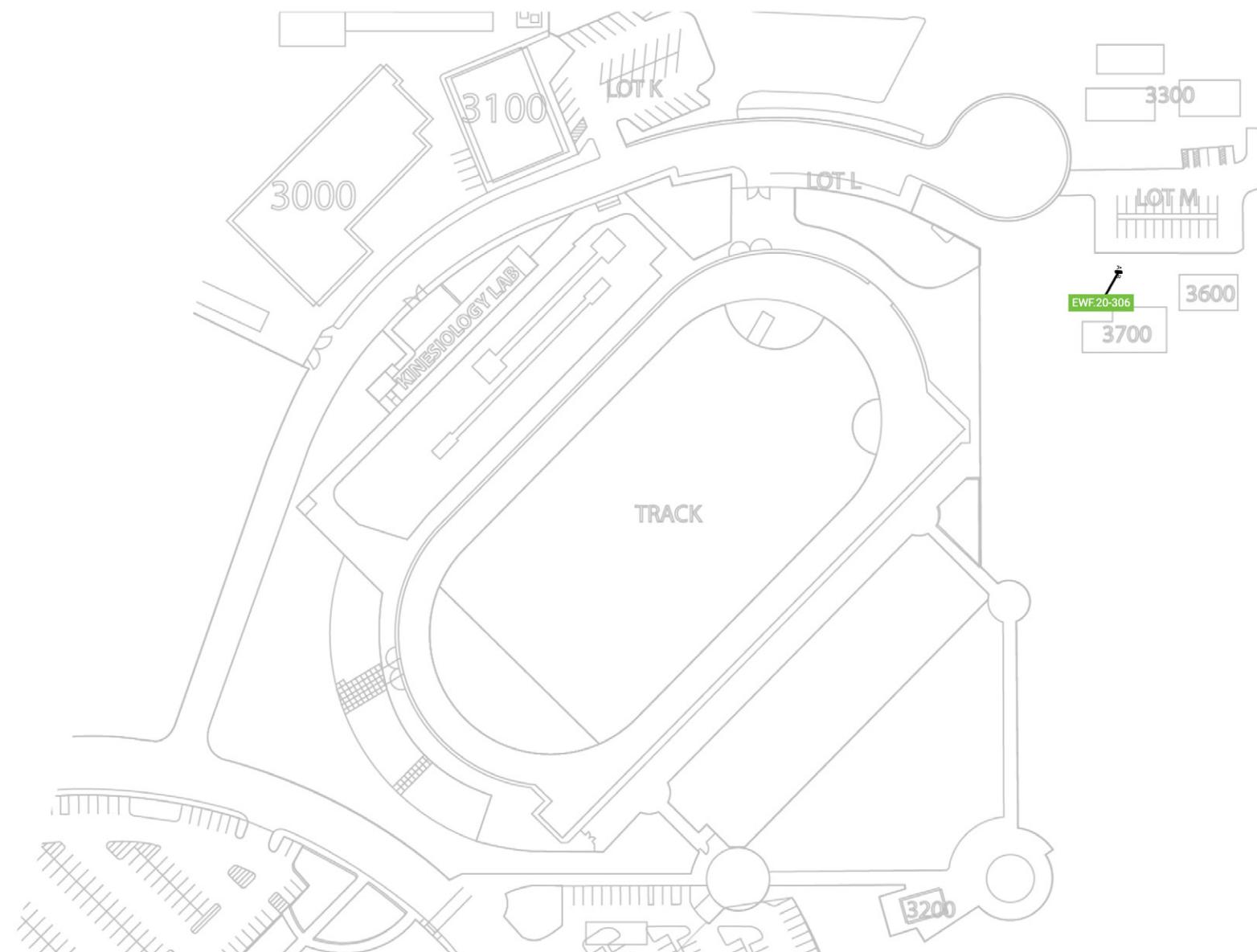
PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
Exterior Wayfinding Project
Job# 3738

CREATED BY / DATE:
MV / 2025_0217


REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

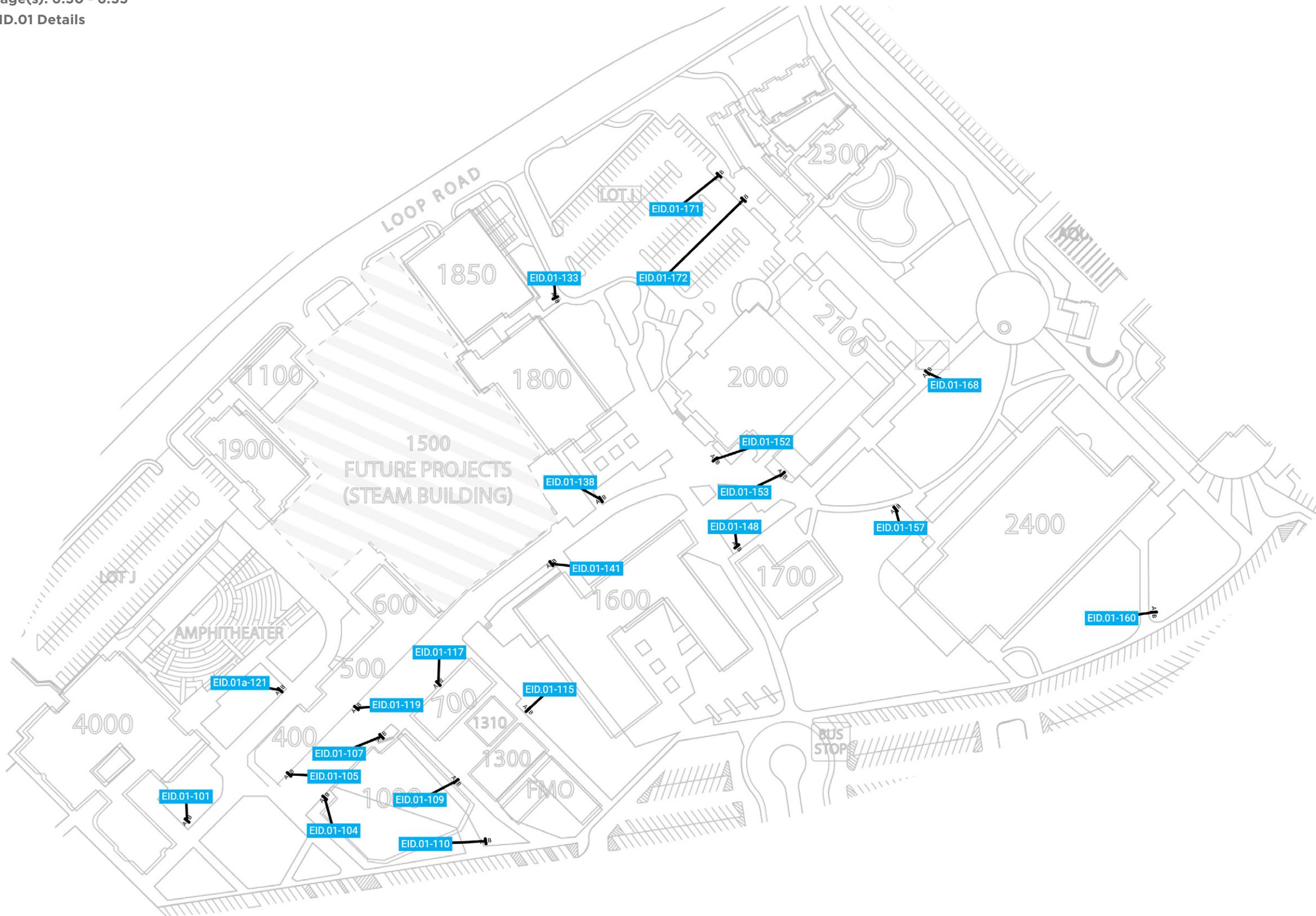
SHEET TITLE:
Pedestrian Sign Location Plan
Central Campus cont.
Overview

PAGE NUMBER:

2.15

KEY

- Wayfinding Signs
- Identification Signs


Architectural drawing showing the layout of the Upper Campus with various buildings and parking lots labeled with numbers.

Pedestrian Sign Location Plan | Central Campus | EID.01 Building ID Freestanding

See Page(s): 6.50 - 6.55

For EID.01 Details

GRAPHIC CONSULTANT:

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
Exterior Wayfinding Project

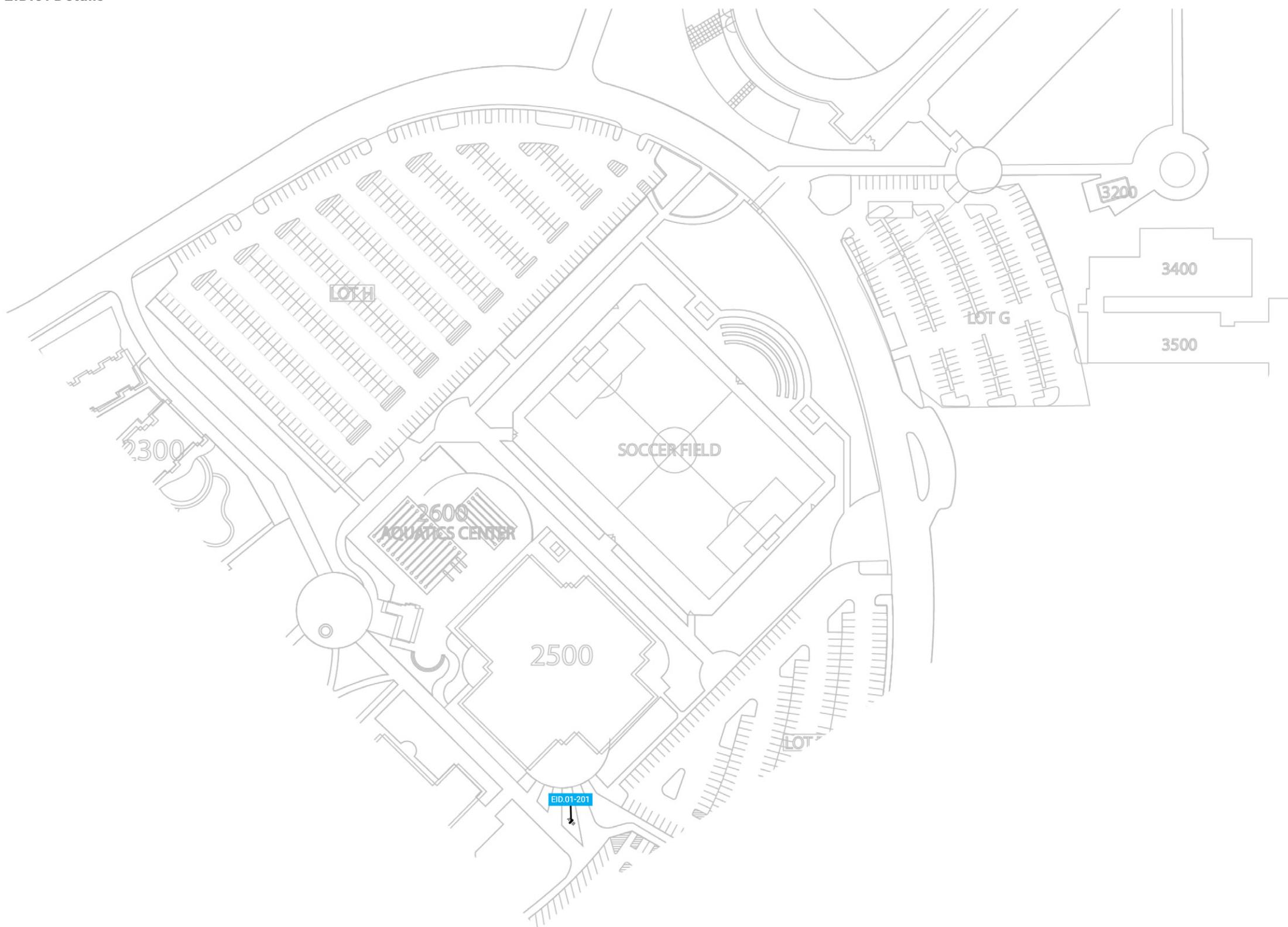
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
Pedestrian Sign Location Plan
Central Campus
EID.01


PAGE NUMBER:

2.17

Pedestrian Sign Location Plan | Upper Campus | EID.01 Building ID Freestanding

See Page(s): 6.50 - 6.55

For EID.01 Details

GRAPHIC CONSULTANT:

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Pedestrian Sign Location Plan
Upper Campus
EID.01**

PAGE NUMBER:

[Intentionally Blank]

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Pedestrian Sign Location Plan
Upper Campus cont.
EID.01**

PAGE NUMBER:

2.19

Pedestrian Sign Location Plan | Central Campus | EWF.10 Primary Pedestrian Directional

See Page(s): 6.34 - 6.38
For EWF.10 Details

Pedestrian Sign Location Plan | Upper Campus | EWF.10 Primary Pedestrian Directional

See Page(s): 6.34 - 6.38
For EWF.10 Details

GRAPHIC CONSULTANT:
SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
Exterior Wayfinding Project
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
Pedestrian Sign Location Plan
Upper Campus
EWF.10

PAGE NUMBER:

2.21

Pedestrian Sign Location Plan | Central Campus | EWF.11 Secondary Pedestrian Directional

See Page(s): 6.39 - 6.42

For EWF.11 Details

GRAPHIC CONSULTANT:

SHANNON LEIGH

STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
**Exterior Wayfinding
Project**

Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Pedestrian Sign Location Plan
Central Campus
EWF.11**

PAGE NUMBER:

2.22

Pedestrian Sign Location Plan | Upper Campus | EWF.11 Secondary Pedestrian Directional

See Page(s): 6.39 - 6.42

For EWF.11 Details

GRAPHIC CONSULTANT:

SHANNON LEIGH

STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
**Exterior Wayfinding
Project**

Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Pedestrian Sign Location Plan
Upper Campus
EWF.11**

PAGE NUMBER:

2.23

Pedestrian Sign Location Plan | Central Campus | EWF.20 Orientation Map

See Page(s): 6.43 - 6.49

For EWF.20 Details

GRAPHIC CONSULTANT:

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
Exterior Wayfinding Project

Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Pedestrian Sign Location Plan
Central Campus
EWF.20**

PAGE NUMBER:

2.24

Pedestrian Sign Location Plan | Upper Campus | EWF.20 Orientation Map

See Page(s): 6.43 - 6.49

For EWF.20 Details

GRAPHIC CONSULTANT:

SHANNON LEIGH

STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
**Exterior Wayfinding
Project**

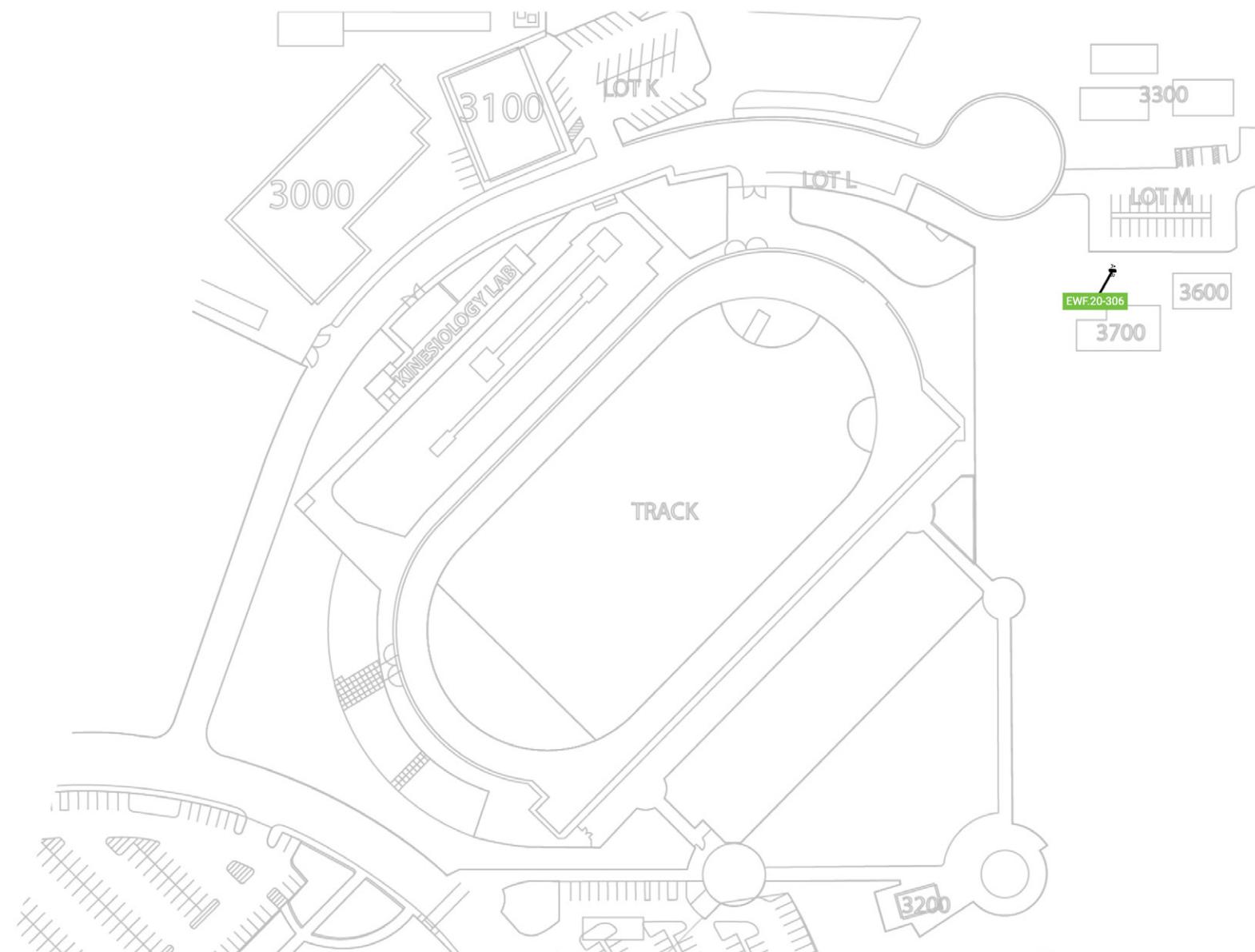
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Pedestrian Sign Location Plan
Upper Campus
EWF.20**


PAGE NUMBER:

2.25

Pedestrian Sign Location Plan | Upper Campus cont. | EWF.20 Orientation Map

See Page(s): 6.43 - 6.49

For EWF.20 Details

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

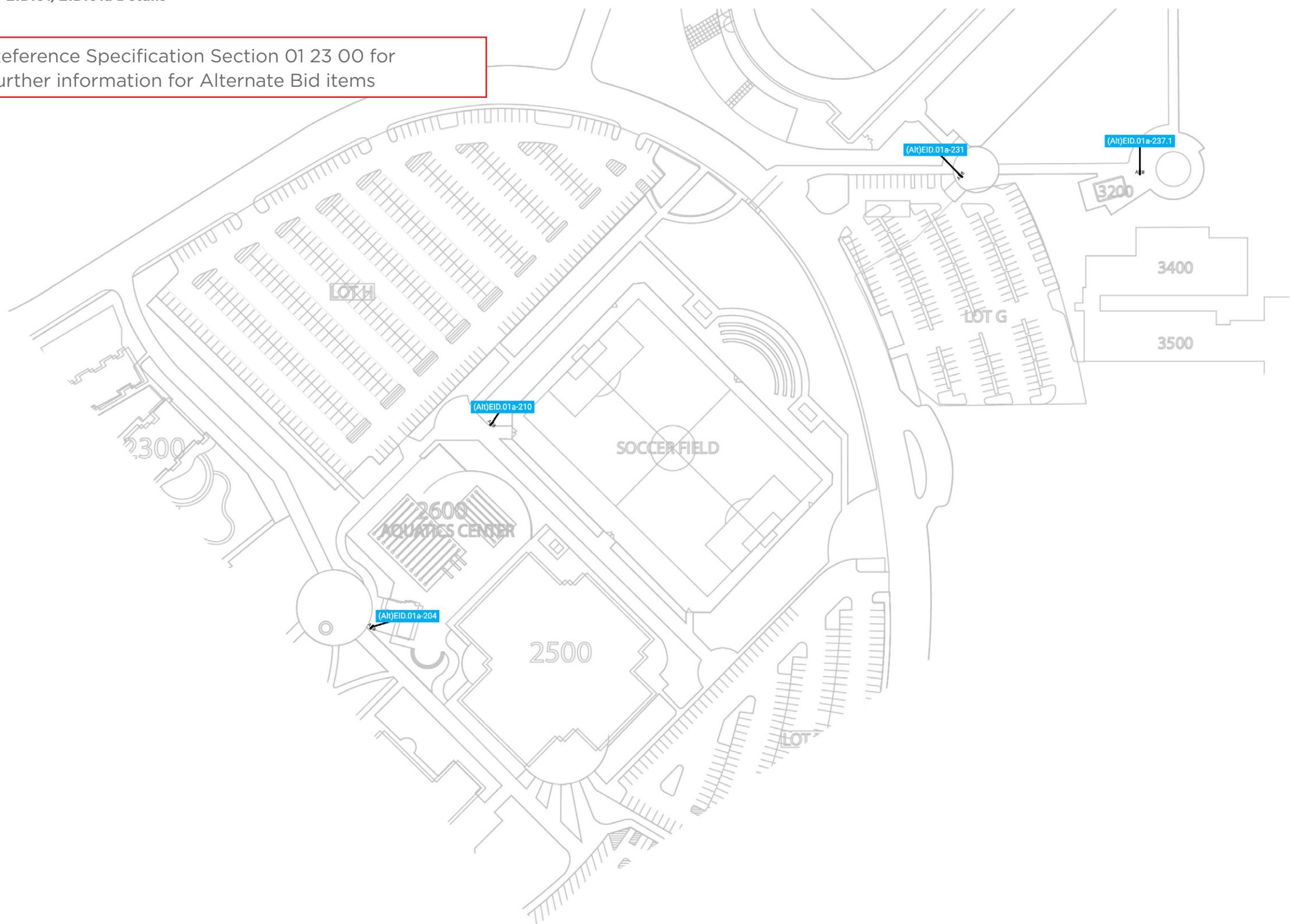
PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Pedestrian Sign Location Plan
Upper Campus cont.
EWF.20**


PAGE NUMBER:

2.26

Add Alternate Bid | Pedestrian Sign Location Plan | Upper Campus

See Page(s): 6.50 - 6.55
For EID.01/EID.01a Details

Reference Specification Section 01 23 00 for further information for Alternate Bid items

GRAPHIC CONSULTANT:

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

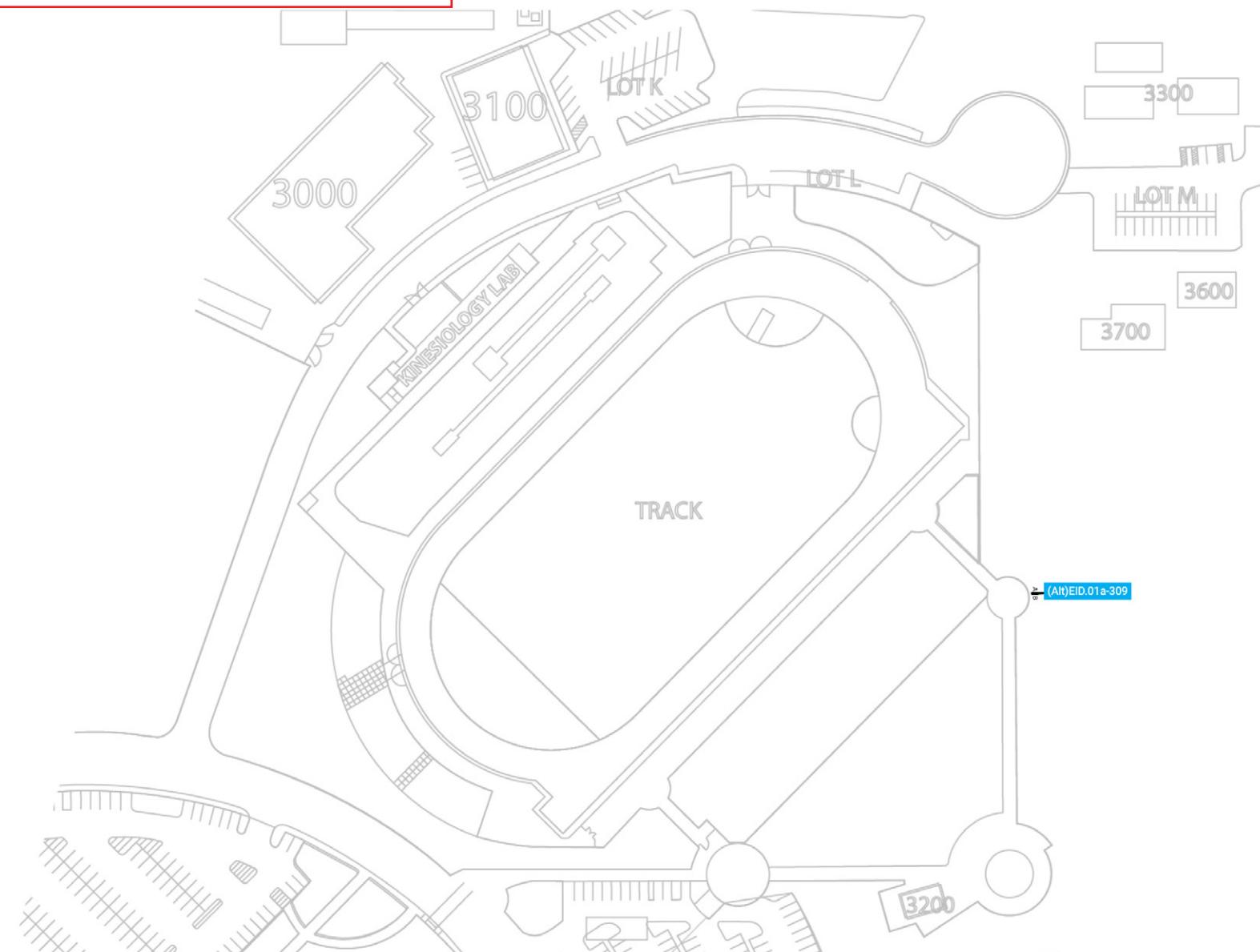
ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
Exterior Wayfinding Project
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only


SHEET TITLE:
Add Alternate Bid
Pedestrian Sign Location Plan
Upper Campus

PAGE NUMBER:

Add Alternate Bid | Pedestrian Sign Location Plan | Upper Campus cont.

See Page(s): 6.50 - 6.55
For EID.01/EID.01a Details

Reference Specification Section 01 23 00 for further information for Alternate Bid items

GRAPHIC CONSULTANT:
SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

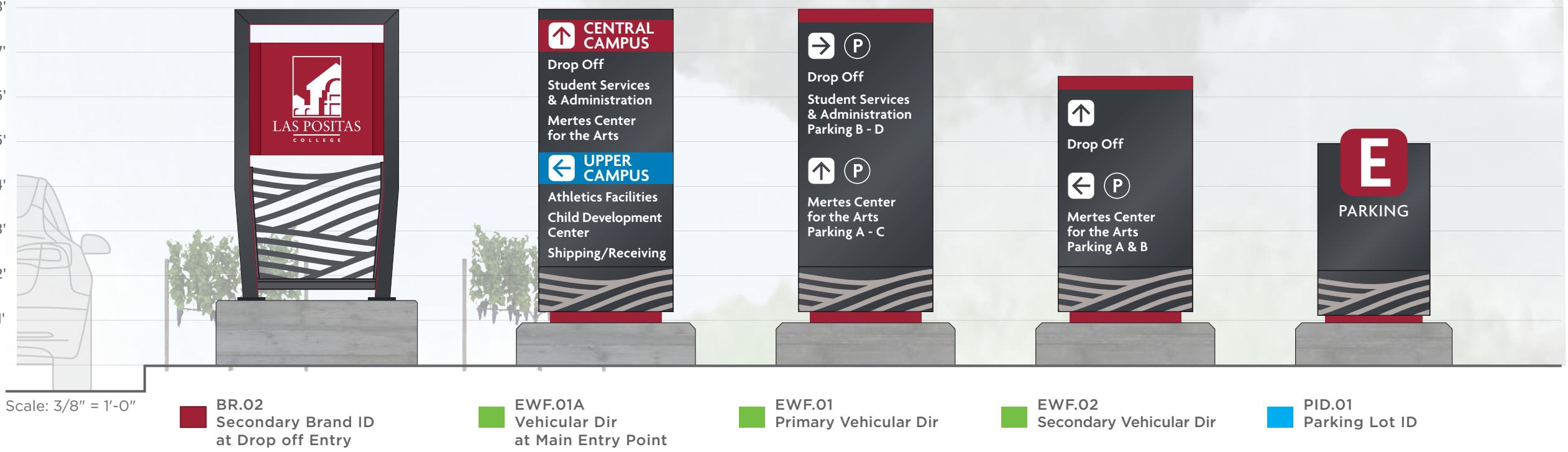
ARCHITECTURAL PLAN PHASE/DATE:
00-00-0000

PROJECT NAME:
Exterior Wayfinding Project

Job# 3738

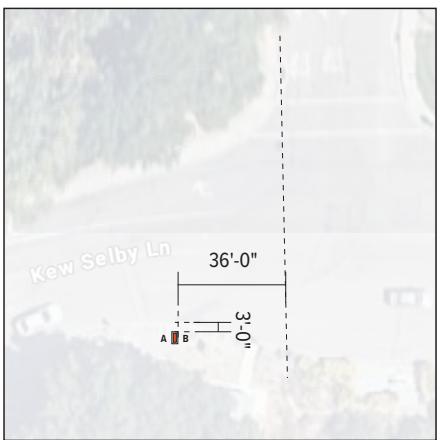
CREATED BY / DATE:
MV / 2025_0217

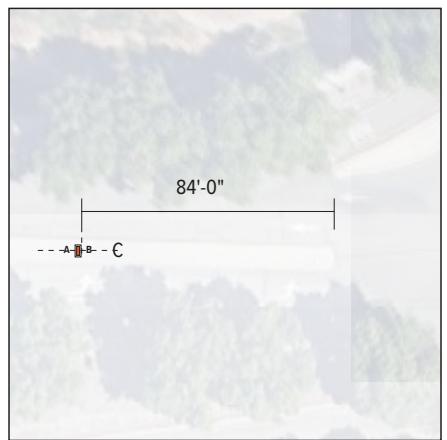
REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_0123

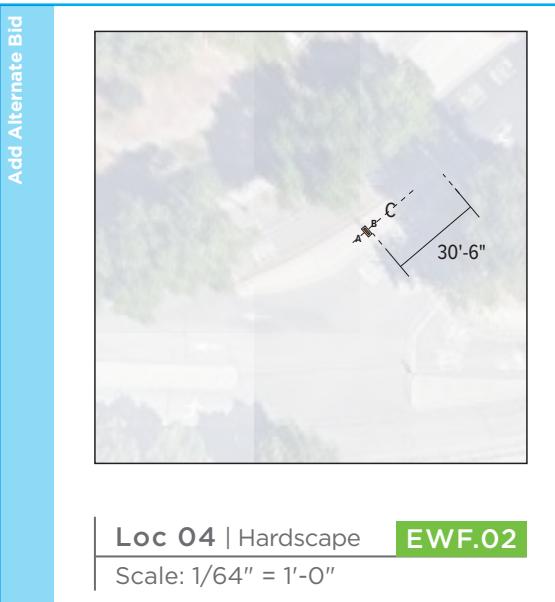

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

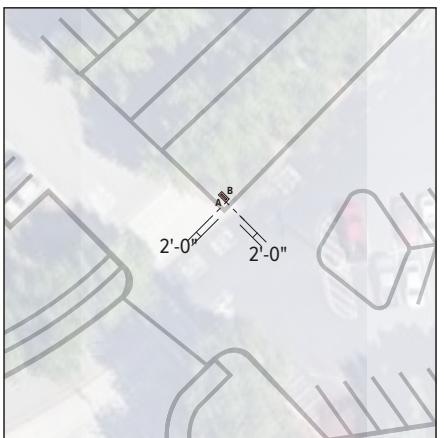
SHEET TITLE:
Add Alternate Bid
Pedestrian Sign Location Plan
Upper Campus cont.

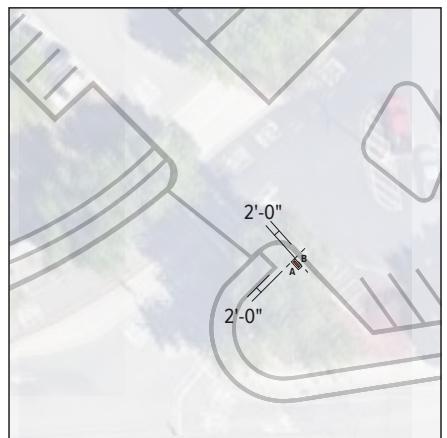
PAGE NUMBER:

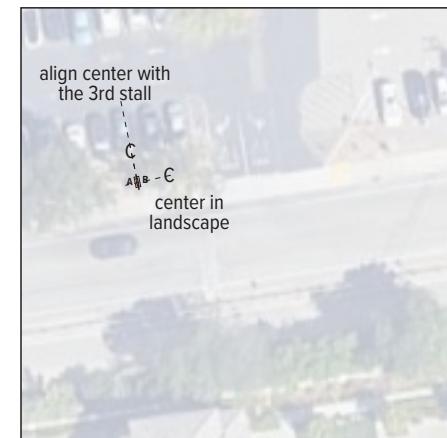

2.28

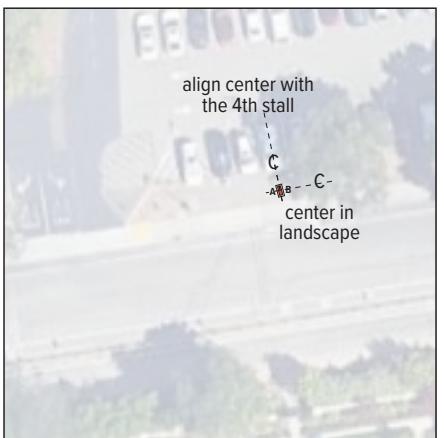


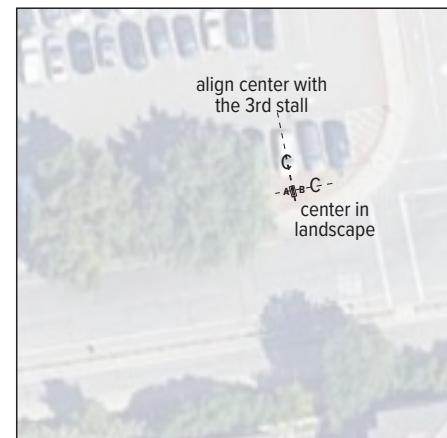


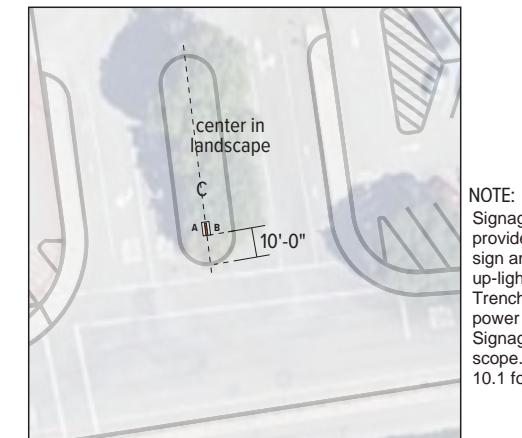

Loc 02 | Softscape **EWF.01A**
Scale: 1/64" = 1'-0"

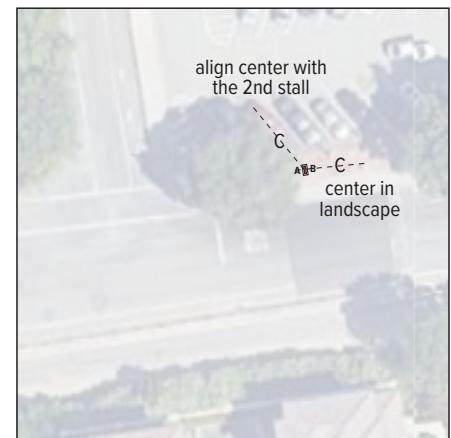

Loc 03 | Hardscape **EWF.02**
Scale: 1/64" = 1'-0"

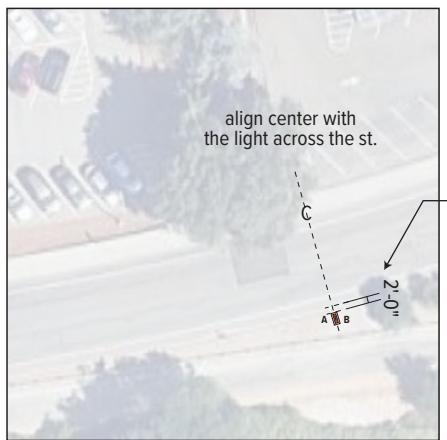

Loc 04 | Hardscape **EWF.02**
Scale: 1/64" = 1'-0"


Loc 04.1 | Softscape **PID.01**
Scale: 1/64" = 1'-0"

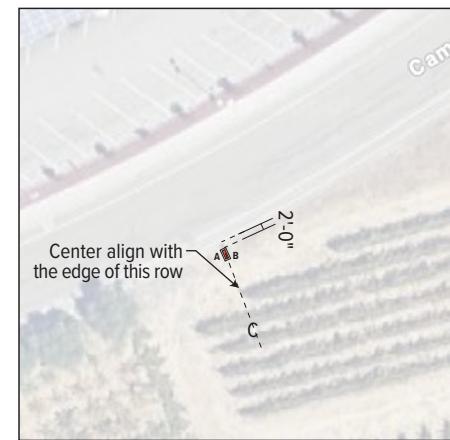

Loc 04.2 | Softscape **PID.01**
Scale: 1/64" = 1'-0"


Loc 10 | Softscape **PID.01**
Scale: 1/64" = 1'-0"


Loc 11 | Softscape **EWF.01**
Scale: 1/64" = 1'-0"


Loc 11.1 | Softscape **PID.01**
Scale: 1/64" = 1'-0"

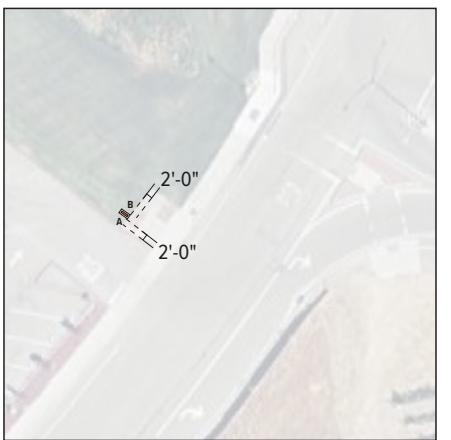
NOTE:
Signage Contractor to provide power to BR.02 sign and landscape up-lights per note J. Trenching and providing power to be included in the Signage Contractor's scope. Reference section 10.1 for as-built reference.



Loc 13 | Softscape **BR.02**
Scale: 1/64" = 1'-0"


Loc 14 | Softscape **EWF.01**

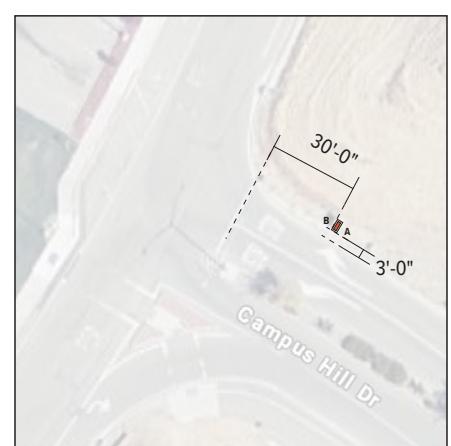
Scale: 1/32" = 1'-0"


Loc 15 | Softscape **EWF.01**

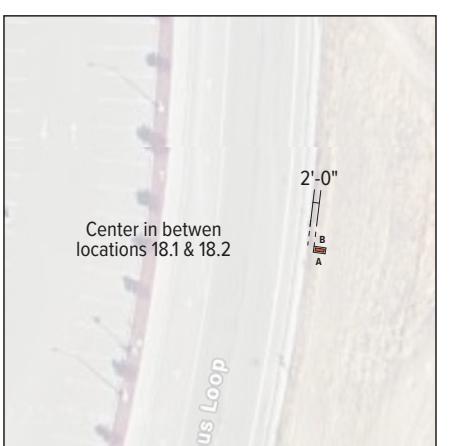
Scale: 1/32" = 1'-0"


Loc 15.1 | Softscape **PID.01**

Scale: 1/32" = 1'-0"


Loc 15.2 | Softscape **PID.01**

Scale: 1/32" = 1'-0"


Loc 15.4 | Softscape **EWF.01**

Scale: 1/64" = 1'-0"

Loc 17 | Softscape **EWF.01A**

Scale: 1/64" = 1'-0"

Loc 18 | Softscape **EWF.01**

Scale: 1/32" = 1'-0"

Loc 18.1 | Softscape **PID.01**

Scale: 1/64" = 1'-0"

Loc 18.2 | Softscape **PID.01**

Scale: 1/64" = 1'-0"

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

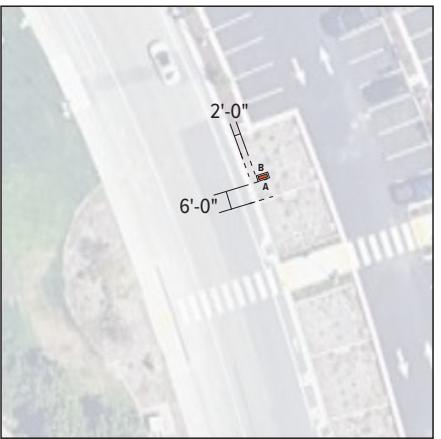
PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

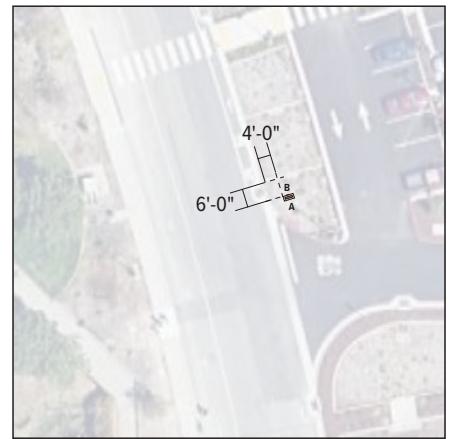
ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

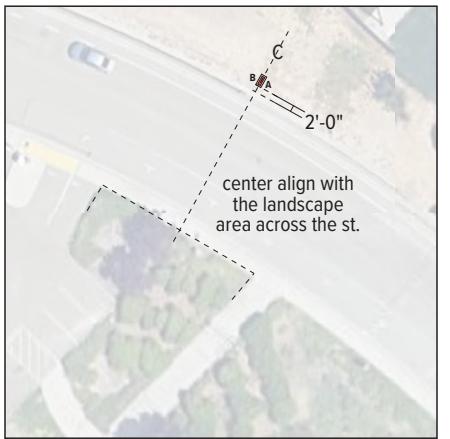
CREATED BY / DATE:
MV / 2025_0217

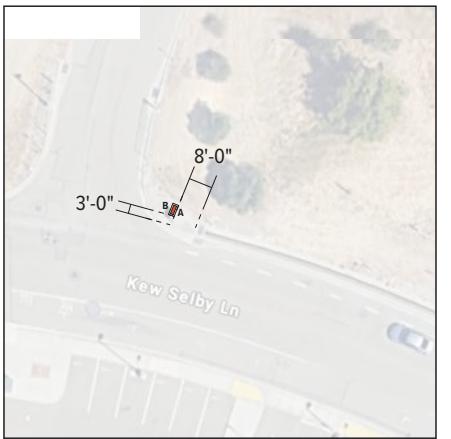

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

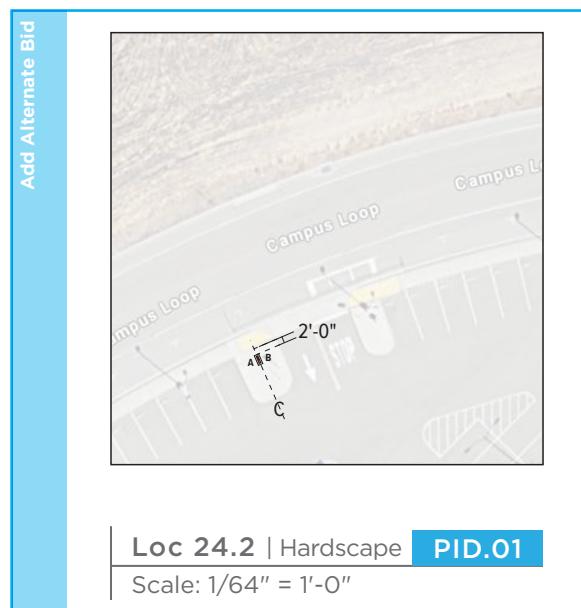

SHEET TITLE:
**Setback Plans
Vehicular Wayfinding**

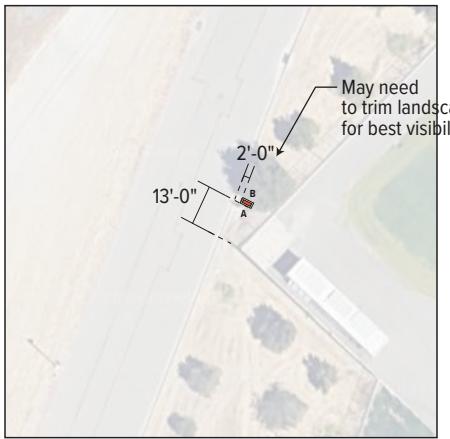
PAGE NUMBER:

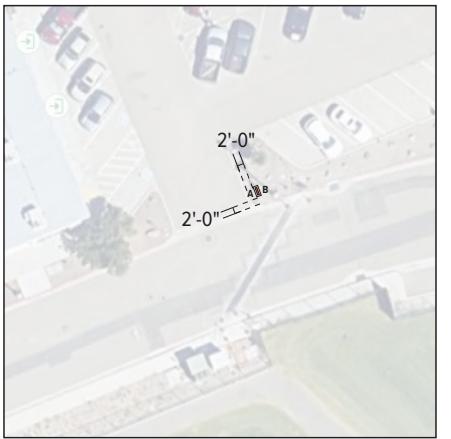

4.3

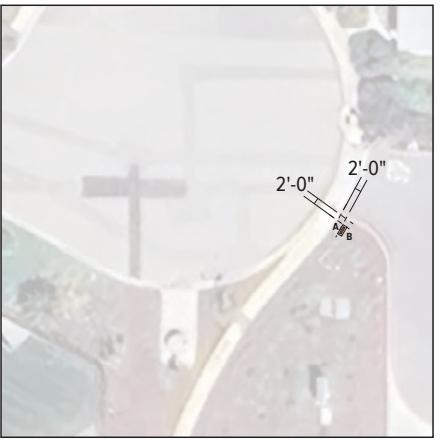

Loc 20 | Softscape **EWF.01**
Scale: 1/64" = 1'-0"

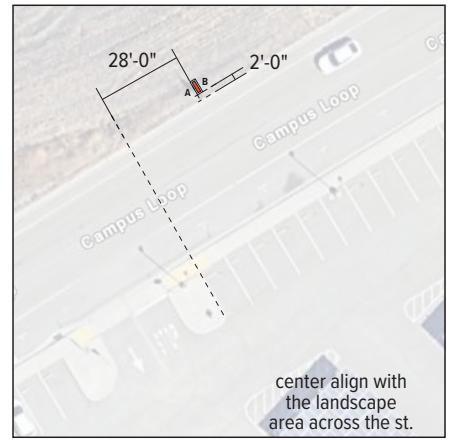
Loc 20.1 | Softscape **PID.01**
Scale: 1/64" = 1'-0"


Loc 22 | Softscape **EWF.01**
Scale: 1/64" = 1'-0"


Loc 23 | Softscape **EWF.01**
Scale: 1/64" = 1'-0"

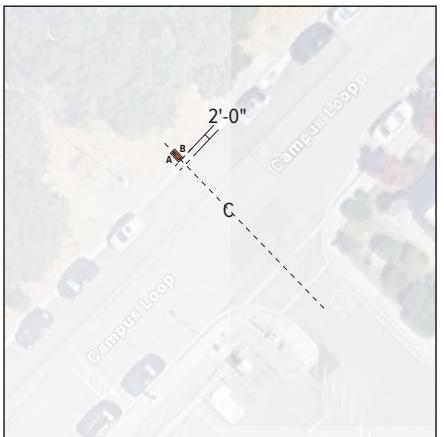

Loc 24.1 | Hardscape **PID.01**
Scale: 1/64" = 1'-0"


Loc 24.2 | Hardscape **PID.01**
Scale: 1/64" = 1'-0"


Loc 25 | Softscape **EWF.01**
Scale: 1/32" = 1'-0"

Loc 26 | Softscape **PID.01**
Scale: 1/32" = 1'-0"

Loc 26.1 | Softscape **PID.01**
Scale: 1/64" = 1'-0"


Loc 27 | Softscape **EWF.01**
Scale: 1/32" = 1'-0"

Loc 29 | Softscape **EWF.01**
Scale: 1/64" = 1'-0"

Loc 29.1 | Softscape **PID.01**
Scale: 1/64" = 1'-0"

Loc 31 | Softscape **EWF.01**
Scale: 1/64" = 1'-0"

Loc 31.1 | Softscape **PID.01**
Scale: 1/64" = 1'-0"

Tree trimming for best visibility.
Fabricator to coordinate tree
trimming with
District for landscape.

Loc 33 | Softscape **EWF.01**
Scale: 1/64" = 1'-0"

GRAPHIC CONSULTANT:

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein
constitute the original and unpublished work of
Shannon-Leigh Associates, LLC and may not be used
without prior written consent. © 2026

CLIENT:

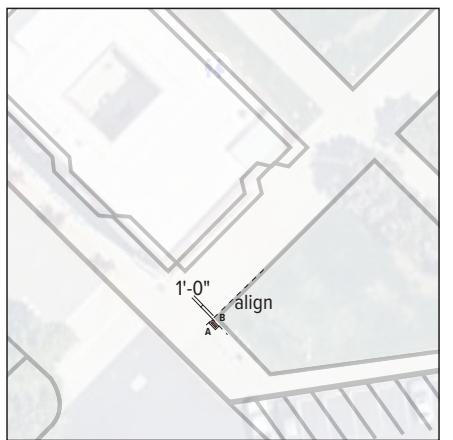
PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

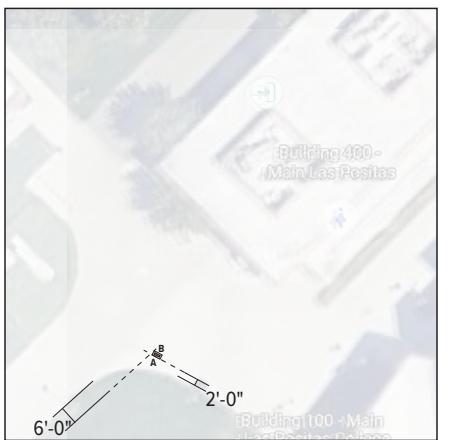
CREATED BY / DATE:
MV / 2025_0217


REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

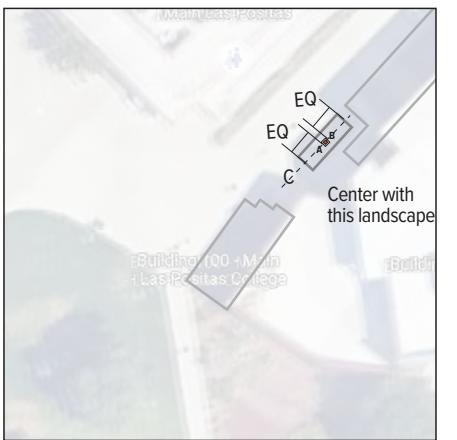
PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Setback Plans
Vehicular Wayfinding**

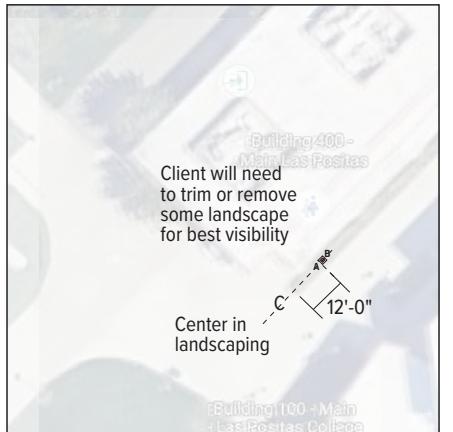
PAGE NUMBER:


Loc 100 | Hardscape **EWF.10**

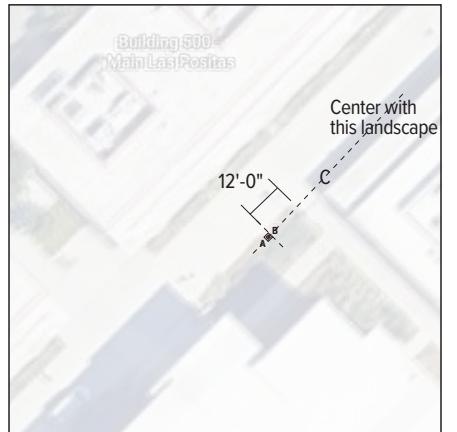
Scale: 1/64" = 1'-0"


Loc 101 | Softscape **EID.01**

Scale: 1/32" = 1'-0"


Loc 103 | Hardscape **EWF.20**

Scale: 1/64" = 1'-0"

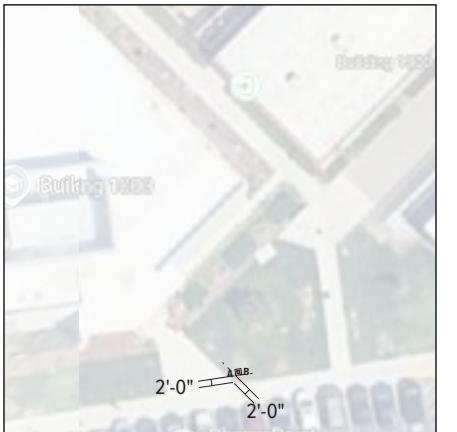


Loc 104 | Softscape **EID.01**

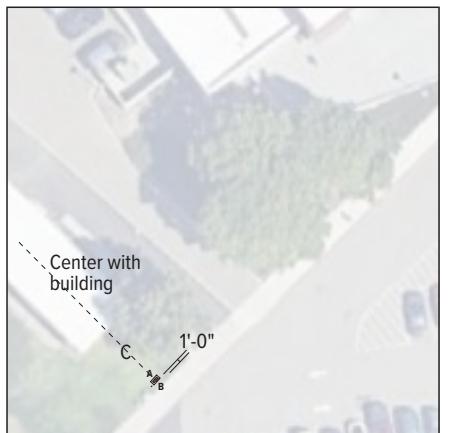
Scale: 1/64" = 1'-0"

Client will need to trim or remove some landscape for best visibility
Center in landscaping

Center with this landscape


Loc 105 | Softscape **EID.01**

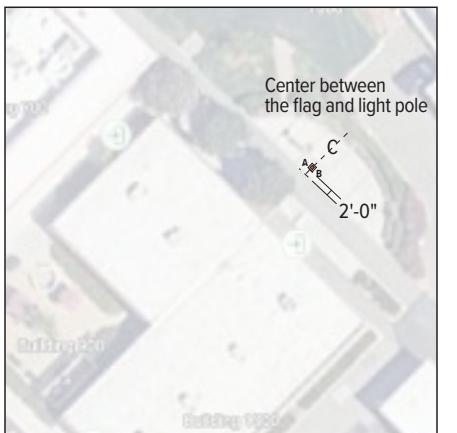
Scale: 1/64" = 1'-0"


Loc 107 | Softscape **EID.01**

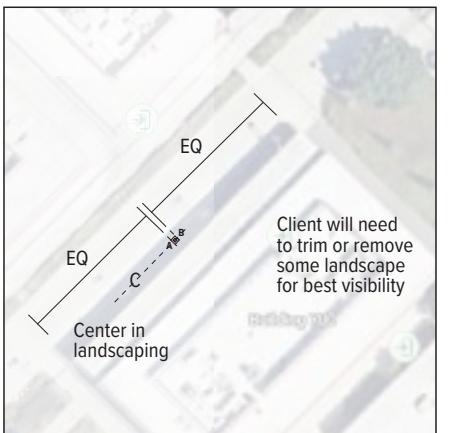
Scale: 1/64" = 1'-0"

Loc 109 | Softscape **EID.01**

Scale: 1/64" = 1'-0"



Center with building



Loc 113 | Hardscape **EWF.11**

Scale: 1/64" = 1'-0"

Center between the flag and light pole

Client will need to trim or remove some landscape for best visibility
Center in landscaping

Loc 112 | Softscape **EWF.20**

Scale: 1/64" = 1'-0"

Loc 115 | Hardscape **EID.01**

Scale: 1/64" = 1'-0"

Loc 117 | Softscape **EID.01**

Scale: 1/64" = 1'-0"

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

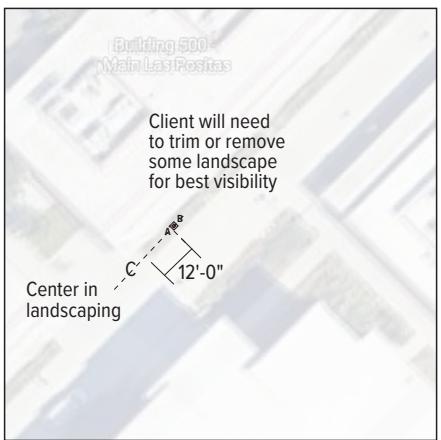
PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

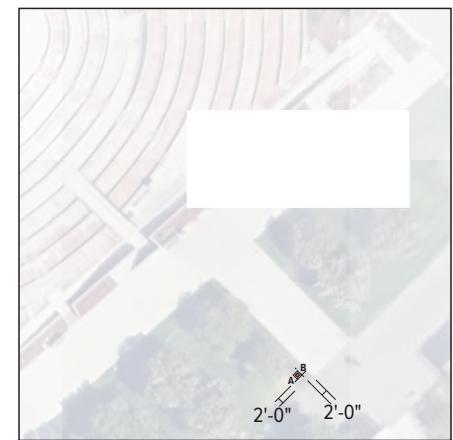
ARCHITECT:

PROJECT NAME:
Exterior Wayfinding Project
Job# 3738

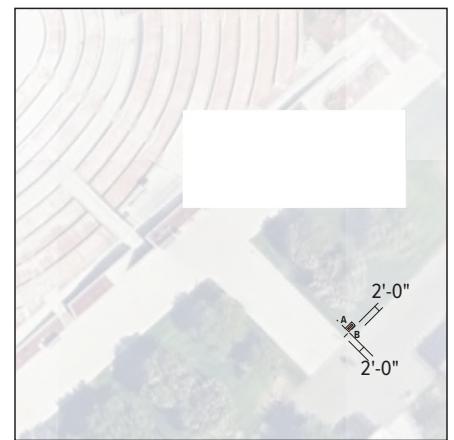
CREATED BY / DATE:
MV / 2025_0217

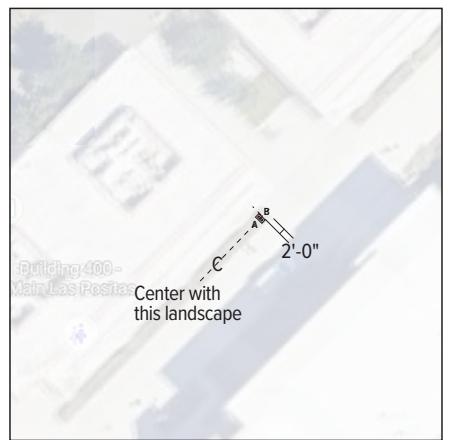

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

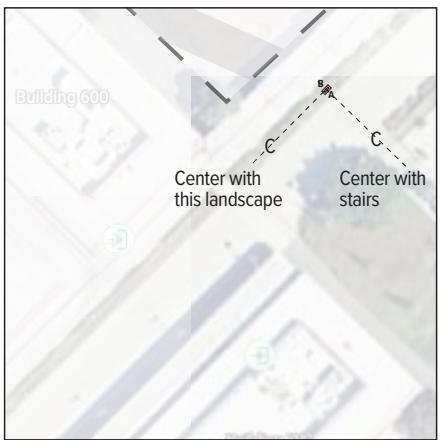
PROJECT PHASE:
100% Construction Intent
For Construction Intent Only


SHEET TITLE:
Setback Plans Pedestrian Wayfinding

PAGE NUMBER:

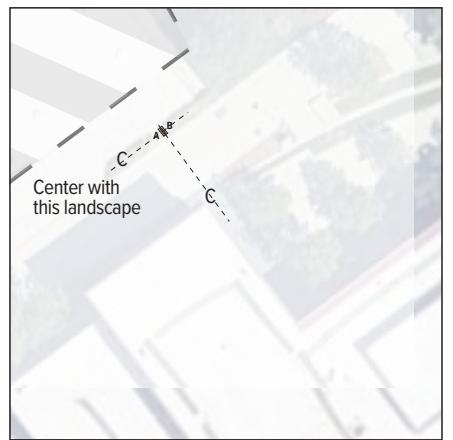

4.7

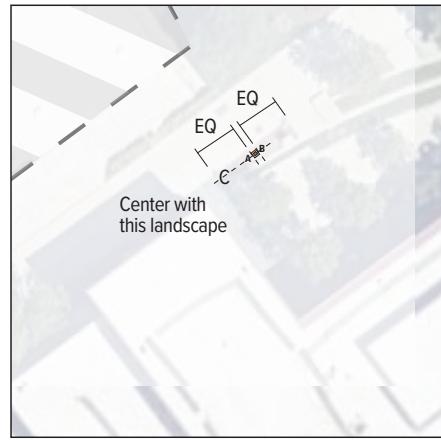

Loc 119 | Softscape **EID.01**
Scale: 1/64" = 1'-0"


Loc 121 | Softscape **EID.01a**
Scale: 1/64" = 1'-0"

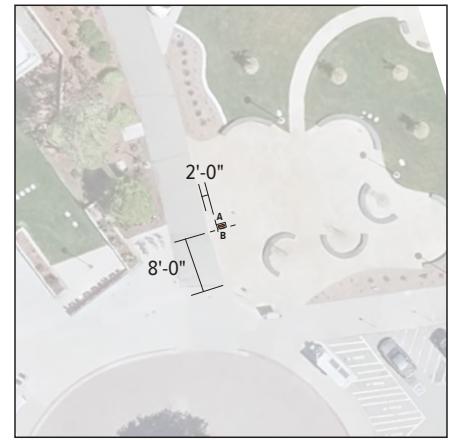
Loc 123 | Softscape **EWF.20**
Scale: 1/64" = 1'-0"

Loc 125 | Softscape **EWF.10**
Scale: 1/64" = 1'-0"


Loc 126 | Softscape **EWF.20**
Scale: 1/64" = 1'-0"


Loc 133 | Softscape **EID.01**
Scale: 1/64" = 1'-0"

Loc 138 | Softscape **EID.01**
Scale: 1/64" = 1'-0"


Loc 139 | Softscape **EWF.10**
Scale: 1/64" = 1'-0"

Loc 141 | Softscape **EID.01**
Scale: 1/64" = 1'-0"

Loc 145 | Softscape **EWF.20**
Scale: 1/64" = 1'-0"

Loc 146 | Softscape **EWF.10**
Scale: 1/64" = 1'-0"

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Setback Plans
Pedestrian Wayfinding**

PAGE NUMBER:

4.8

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

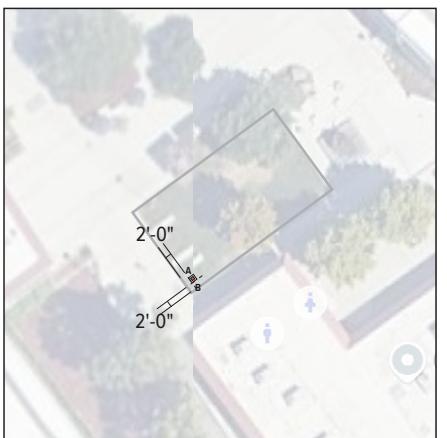
PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

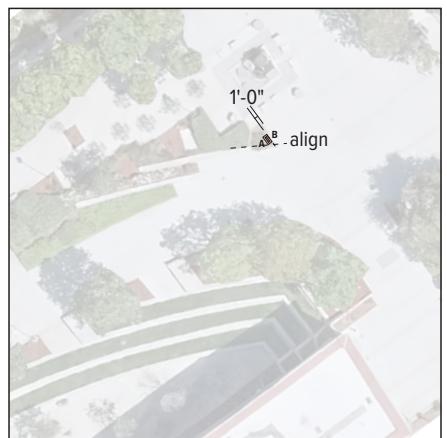
ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

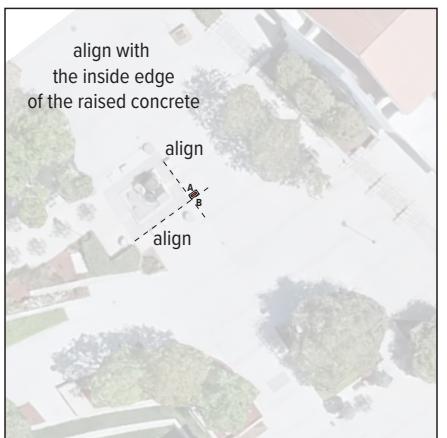
CREATED BY / DATE:
MV / 2025_0217

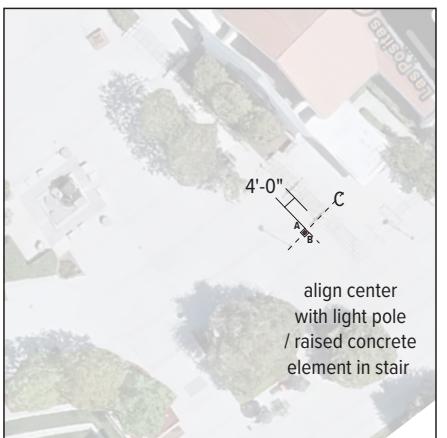

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

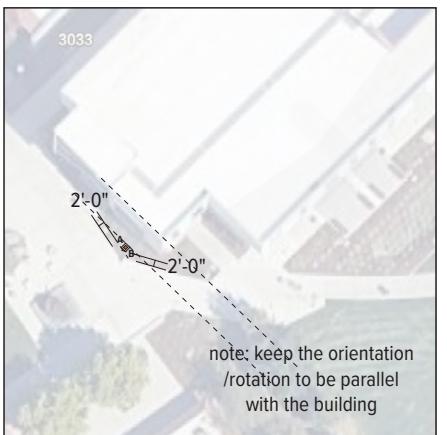
PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

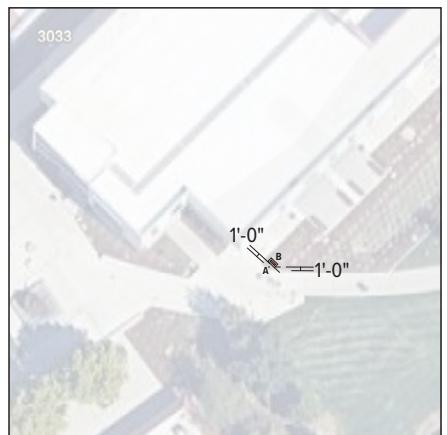

SHEET TITLE:
**Setback Plans
Pedestrian Wayfinding**

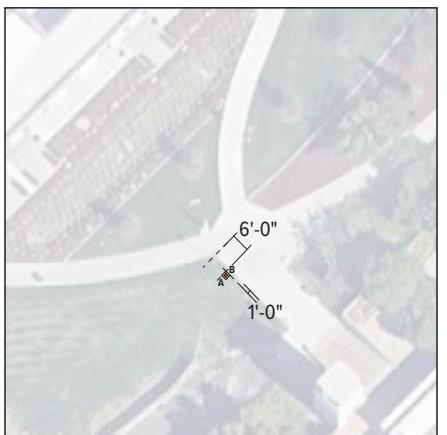
PAGE NUMBER:

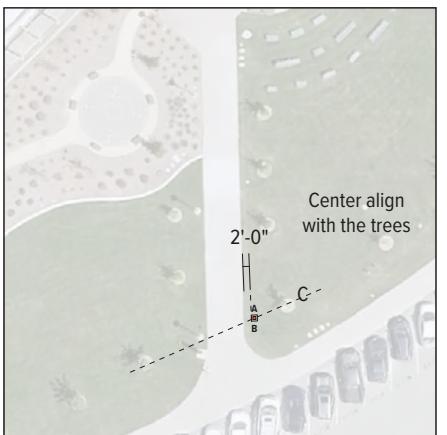

4.9

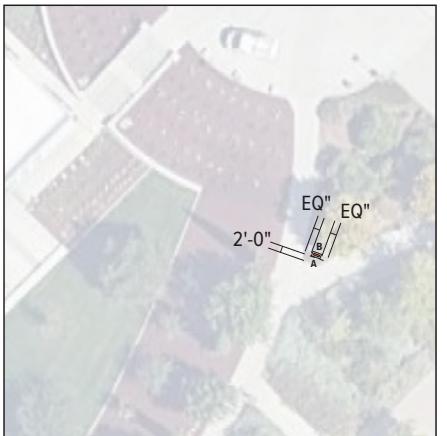

Loc 148 | Softscape **EID.01**
Scale: 1/64" = 1'-0"

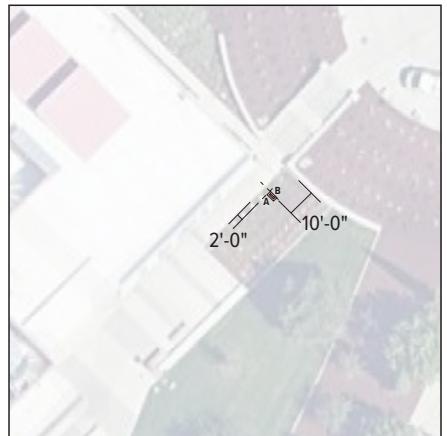

Loc 150 | Softscape **EWF.10**
Scale: 1/64" = 1'-0"

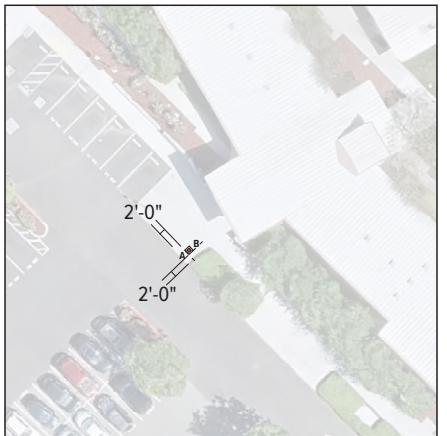

Loc 151 | Hardscape **EWF.20**
Scale: 1/64" = 1'-0"

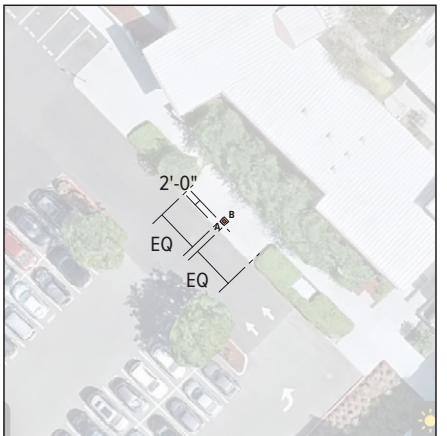

Loc 152 | Hardscape **EID.01**
Scale: 1/64" = 1'-0"


Loc 153 | Softscape **EID.01**
Scale: 1/64" = 1'-0"


Loc 155 | Softscape **EWF.11**
Scale: 1/64" = 1'-0"


Loc 157 | Softscape **EID.01**
Scale: 1/64" = 1'-0"


Loc 160 | Softscape **EID.01**
Scale: 1/64" = 1'-0"


Loc 166 | Hardscape **EWF.10**
Scale: 1/64" = 1'-0"

Loc 167 | Softscape **EWF.11**
Scale: 1/64" = 1'-0"

Loc 171 | Hardscape **EID.01**
Scale: 1/64" = 1'-0"

Loc 172 | Hardscape **EID.01**
Scale: 1/64" = 1'-0"

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

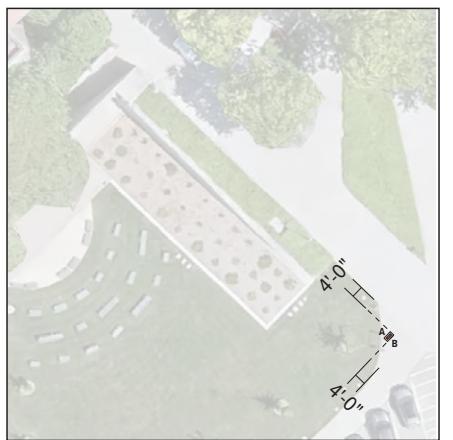
ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**

Job# 3738

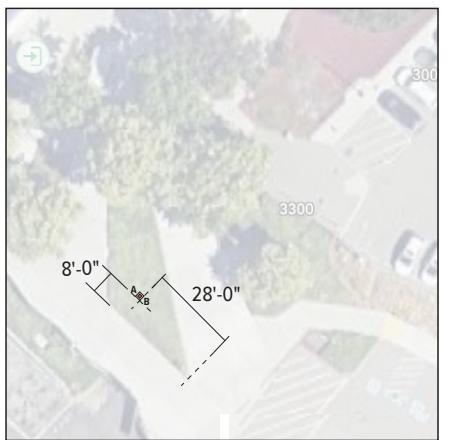
CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:

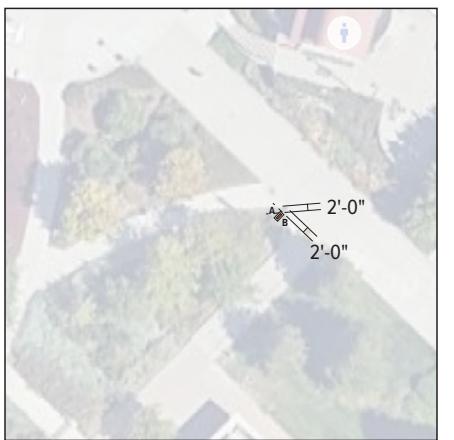

MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

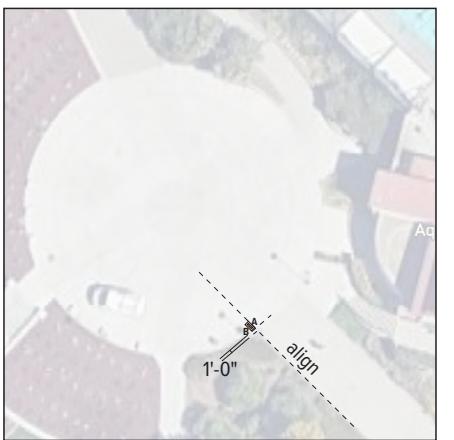
SHEET TITLE:
**Setback Plans
Pedestrian Wayfinding**


PAGE NUMBER:

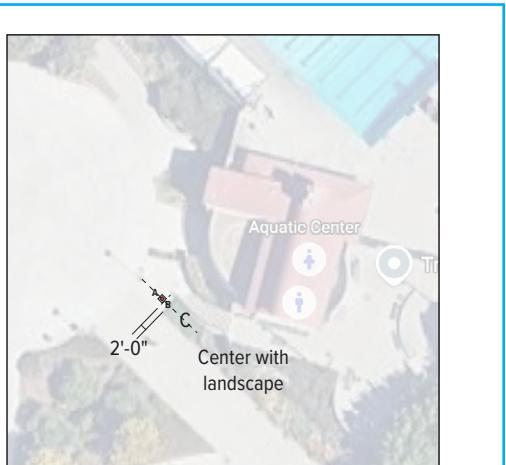
4.10


Loc 200 | Hardscape **EWF.20**

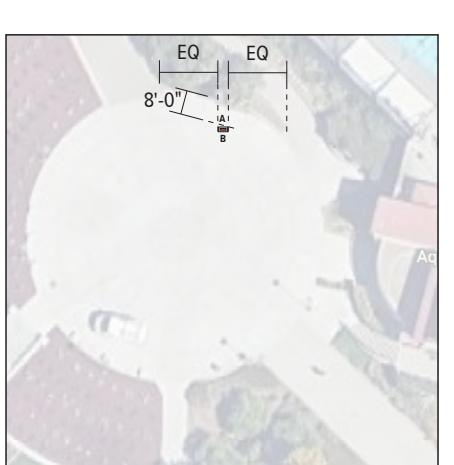
Scale: 1/64" = 1'-0"


Loc 201 | Softscape **EID.01**

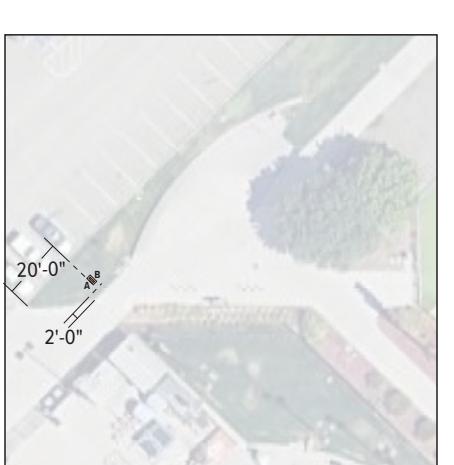
Scale: 1/64" = 1'-0"


Loc 202 | Softscape **EWF.11**

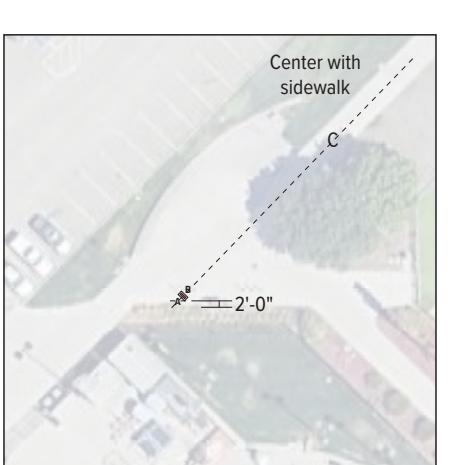
Scale: 1/64" = 1'-0"


Loc 203 | Hardscape **EWF.10**

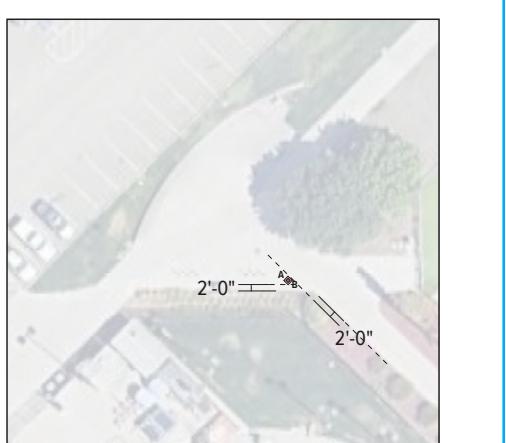
Scale: 1/64" = 1'-0"


Loc 204 | Hardscape **EID.01a**

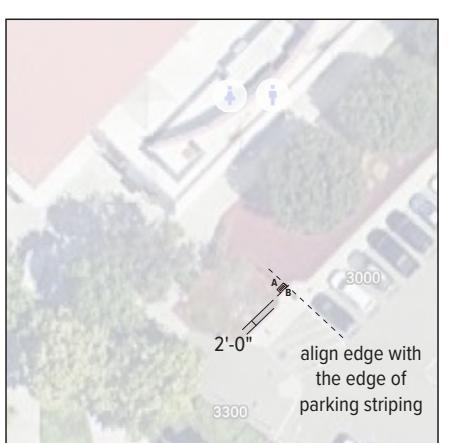
Scale: 1/64" = 1'-0"


Loc 205 | Hardscape **EWF.20**

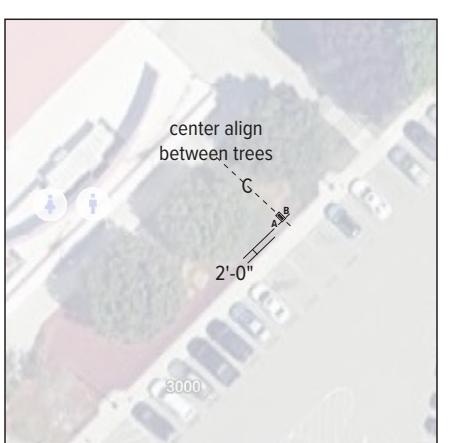
Scale: 1/64" = 1'-0"


Loc 208 | Softscape **EWF.10**

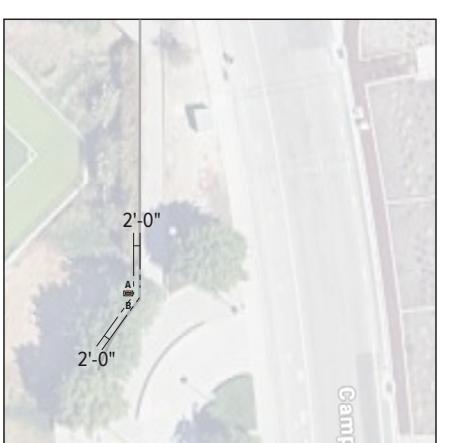
Scale: 1/64" = 1'-0"


Loc 209 | Hardscape **EWF.20**

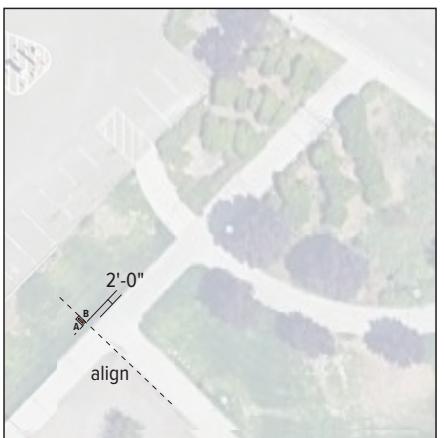
Scale: 1/64" = 1'-0"


Loc 210 | Hardscape **EID.01a**

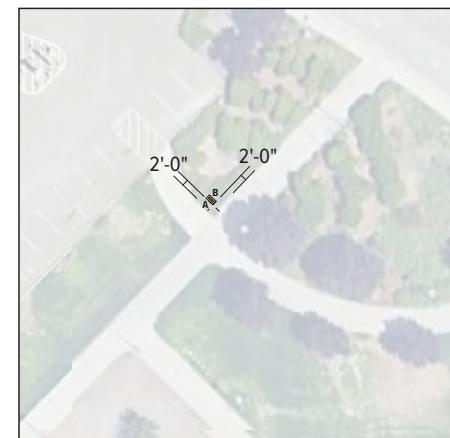
Scale: 1/64" = 1'-0"


Loc 214 | Softscape **EWF.20**

Scale: 1/64" = 1'-0"


Loc 215 | Softscape **EWF.10**

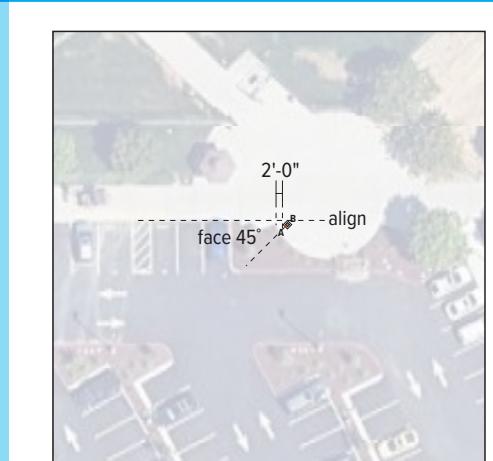
Scale: 1/64" = 1'-0"


Loc 220 | Softscape **EWF.11**

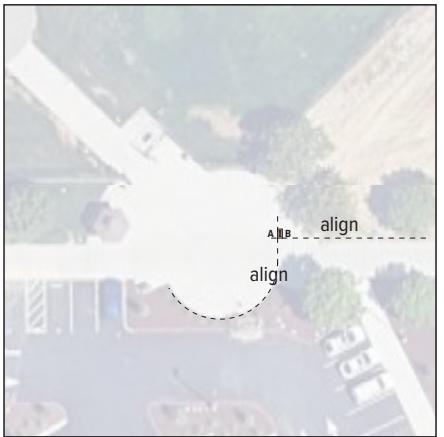
Scale: 1/64" = 1'-0"

Loc 227 | Softscape **EWF.10**

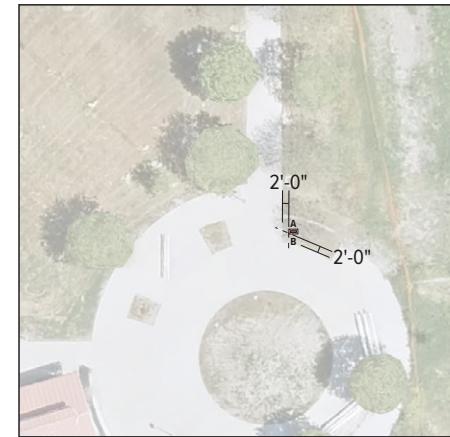
Scale: 1/64" = 1'-0"


Loc 228 | Softscape **EWF.20**

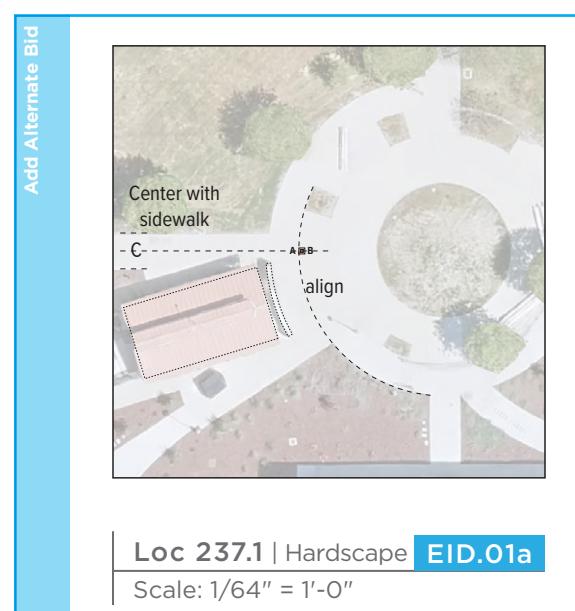
Scale: 1/64" = 1'-0"


Loc 230 | Hardscape **EWF.10**

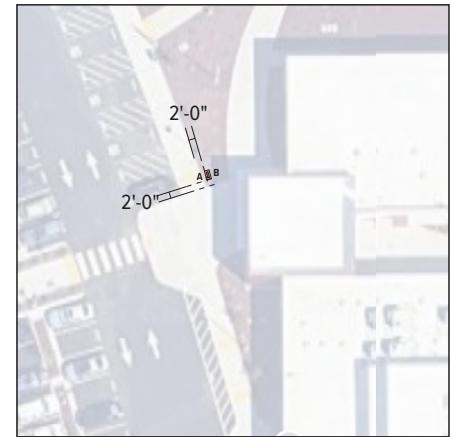
Scale: 1/64" = 1'-0"


Loc 231 | Hardscape **EID.01a**

Scale: 1/64" = 1'-0"


Loc 233 | Hardscape **EWF.10**

Scale: 1/64" = 1'-0"


Loc 235 | Softscape **EWF.11**

Scale: 1/64" = 1'-0"

Loc 237.1 | Hardscape **EID.01a**

Scale: 1/64" = 1'-0"

Loc 239 | Softscape **EWF.11**

Scale: 1/64" = 1'-0"

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

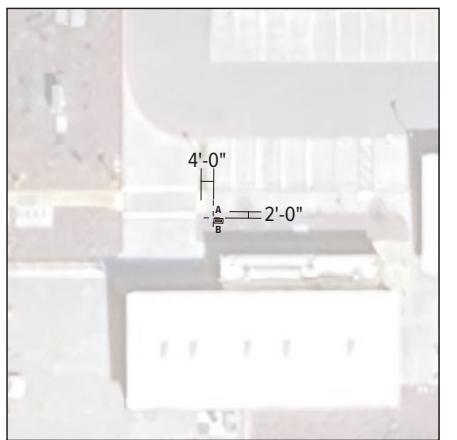
PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

CREATED BY / DATE:
MV / 2025_0217


REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Setback Plans
Pedestrian Wayfinding**

PAGE NUMBER:

4.11

Loc 306 | Hardscape **EWF.20**

Scale: 1/64" = 1'-0"

GRAPHIC CONSULTANT:

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:

Exterior Wayfinding Project

Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:

MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:

100% Construction Intent
For Construction Intent Only

SHEET TITLE:

**Setback Plans
Pedestrian Wayfinding**

PAGE NUMBER:

4.12

Typography

Agenda

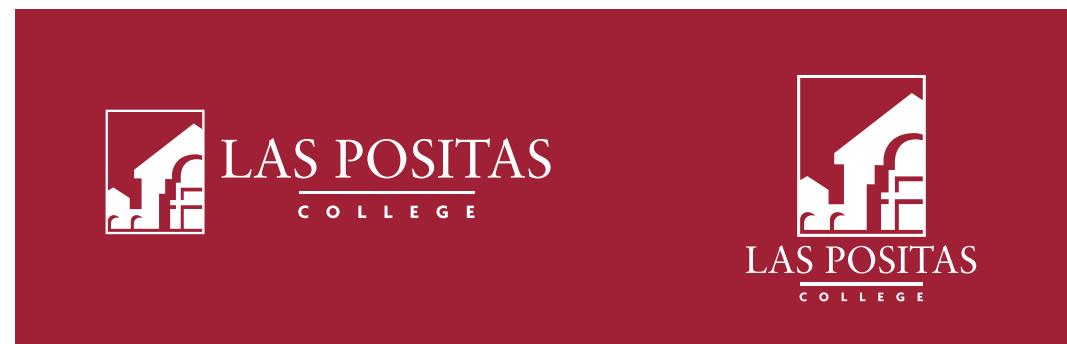
Aa Aa Aa Aa Aa
 Light Regular Medium SemiBold Bold

ABCDEFGHIJKLMNOPQRSTUVWXYZ
 abcdefghijklmnopqrstuvwxyz
 0123456789

SemiBold

Symbols / Icons

Arrows


Colors

Brand

Brand - Monochromatic on dark background

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

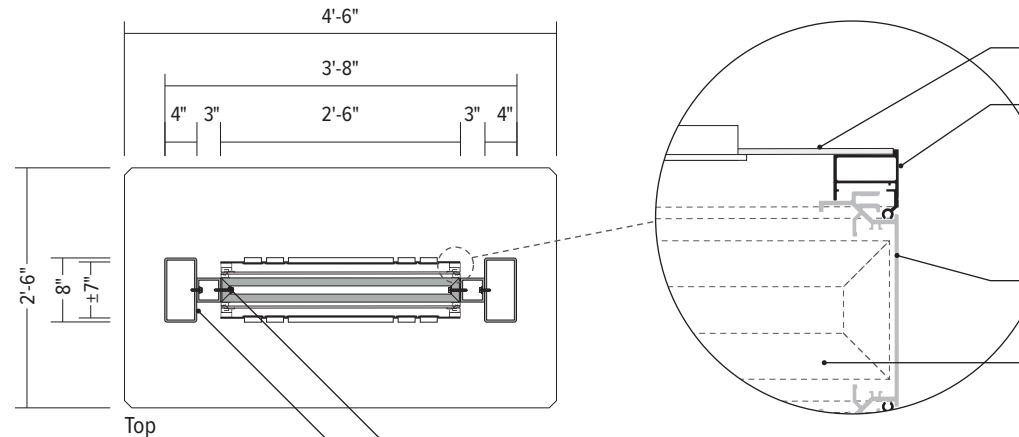
ARCHITECT:

PROJECT NAME:
Exterior Wayfinding Project
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
 MV 2025_0313
 MV 2025_0530
 MV 2025_0822
 MV 2025_1003
 MV 2025_1125
 MV 2025_1211
 MV 2025_0123

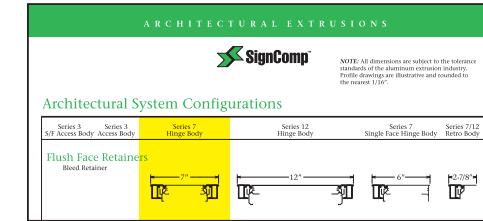
PROJECT PHASE:
100% Construction Intent
 For Construction Intent Only


SHEET TITLE:
Graphic Standards
 Typography, Arrows, Colors
 Symbols, Brand

PAGE NUMBER:

5.2

NOTE:
DRAWINGS FOR CONSTRUCTION INTENT ONLY.
DO NOT USE FOR FABRICATION. SIGNAGE CONTRACTOR
TO PROVIDE FINAL DRAWING DETAILS.
(FINAL DETAILS SHALL BE DEFERRED TO THE SHOPS DRAWINGS
BY CONTRACTOR)


1/8" Aluminum
SignComp or approved equal
Flush face Bleed body retainers
All hardware to be concealed,
no exposed fasteners on sign faces.
Hardware painted to match sign cabinet

SignComp or approved equal
Hinge body - **7" Series 7**

Aluminum rectangular tube frame
(see engineering: SGN9.1 - SGN9.5)

NOTE:

SIGN LOCATIONS TO BE COORDINATED WITH UNDERGROUND UTILITIES.
SIGN FABRICATOR IS RESPONSIBLE TO USE ERASABLE PAINT TO MARK
ALL LOCATIONS AND REFERENCE ALL UNDERGROUND UTILITIES PRIOR
TO DIGGING / INSTALLATION.

GRAPHIC CONSULTANT:
SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein
constitute the original and unpublished work of
Shannon-Leigh Associates, LLC and may not be used
without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

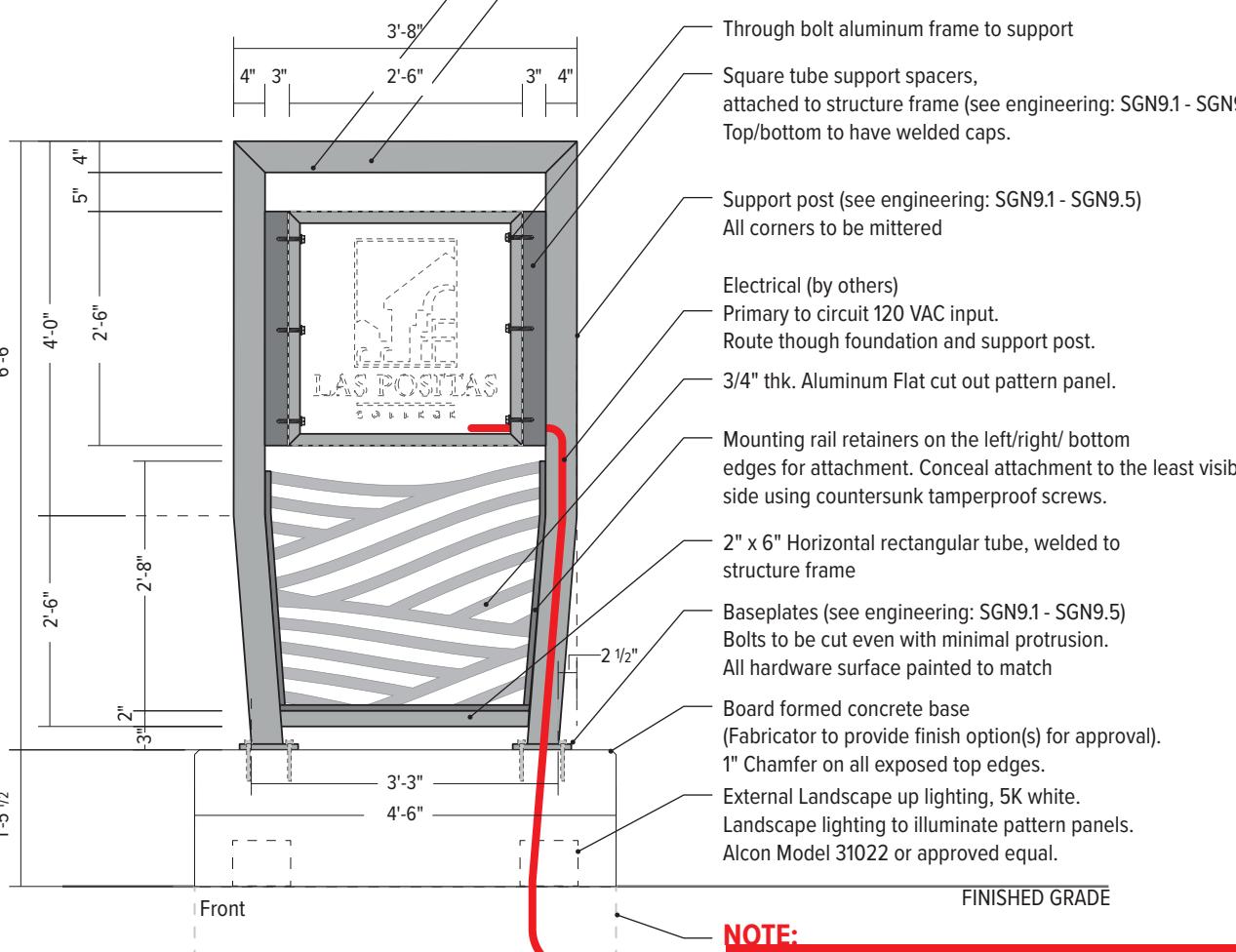
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**

Job# 3738

CREATED BY / DATE:
MV / 2025_0217

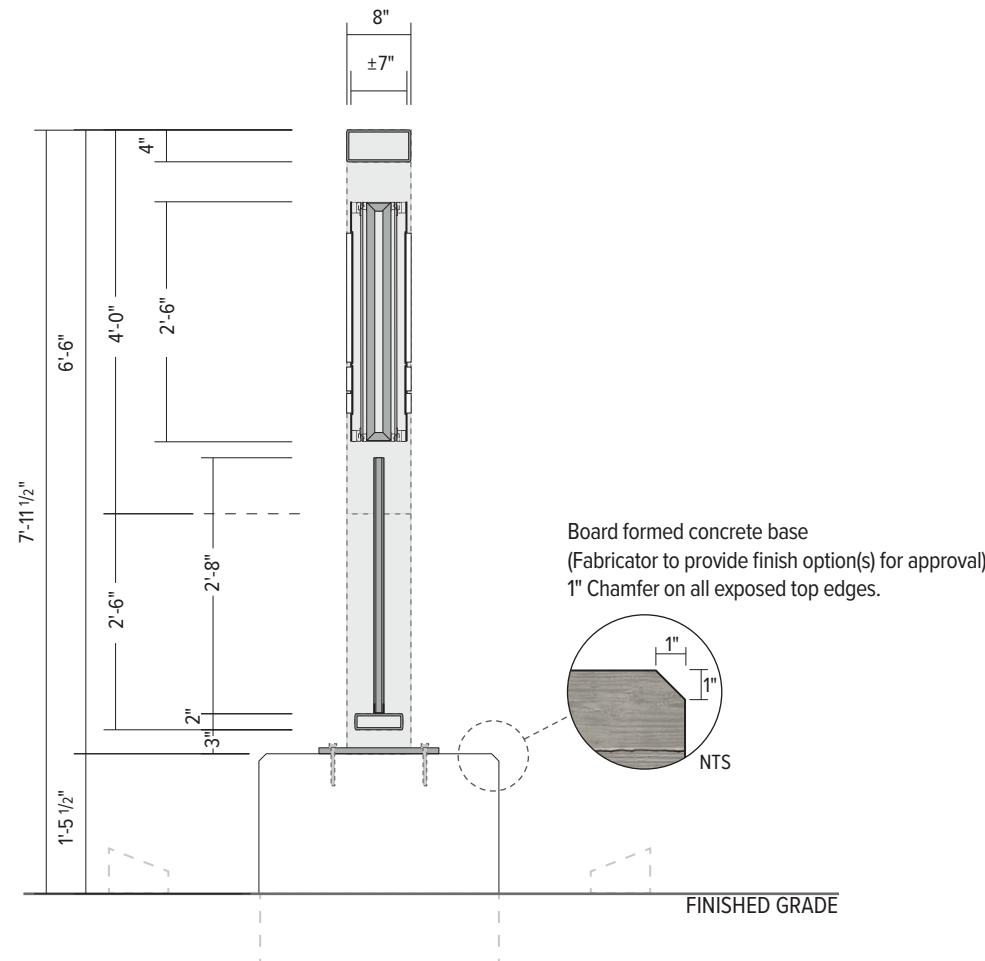

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

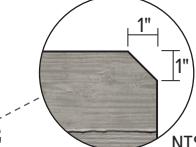
SHEET TITLE:
**Fabrication Intent
BR.02**

PAGE NUMBER:

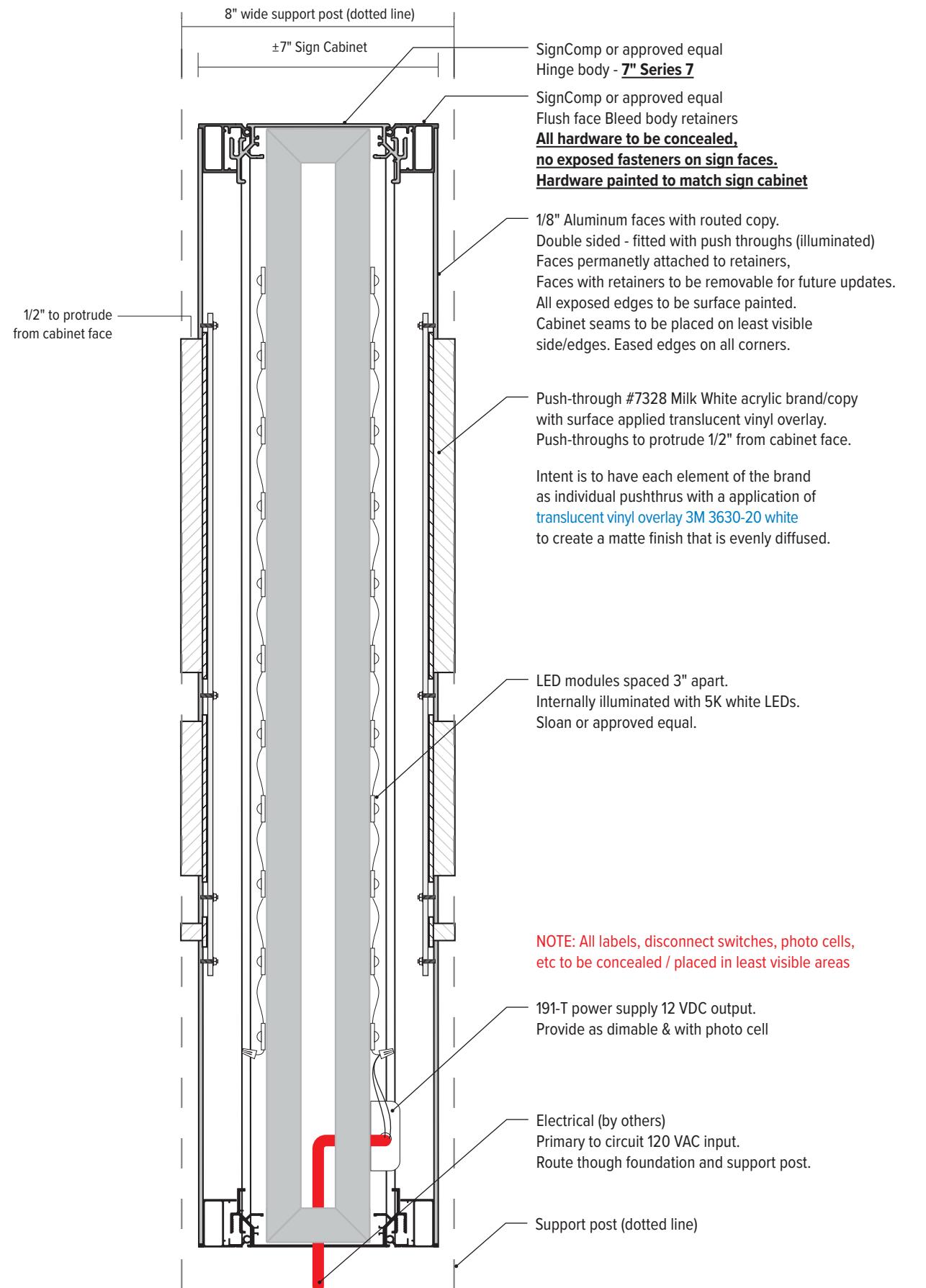
6.3



1 BR.02 Fabrication Intent


Scale: 1/2" = 1'-0"

NOTE:


CONCRETE FOUNDATION / ATTACHMENT
SEE ENGINEERING SGN9.1 - SGN9.5
SEE ENGINEERING & CALCULATIONS SECTION 11.1

Board formed concrete base
(Fabricator to provide finish option(s) for approval).
1" Chamfer on all exposed top edges.

FINISHED GRADE

1 | BR.01 & BR.02 - Illuminated Cabinet Section View

Scale: NTS

GRAPHIC CONSULTANT:

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

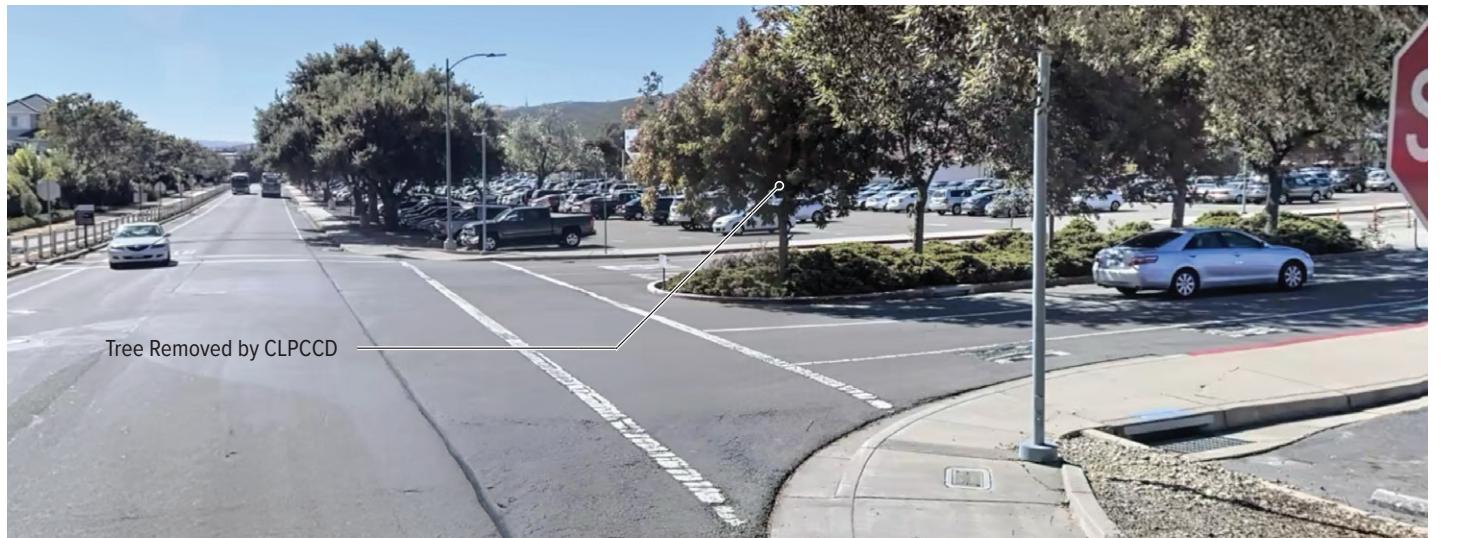
PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

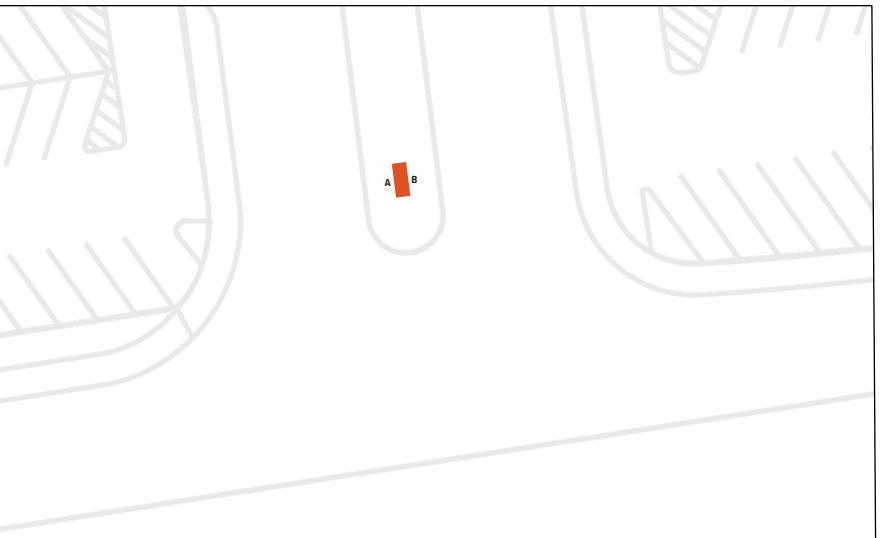
PROJECT NAME:
Exterior Wayfinding Project
Job# 3738

CREATED BY / DATE:
MV / 2025_0217


REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
Fabrication Intent
BR.01 & BR.02


PAGE NUMBER:

General Note:
Reference Engineering Drawings & Calculations in Section 11

2 Existing Conditions | At Campus Hill Drive Entrance

Scale: NTS

3 Plan View | Loc 13 (see dimensioned setback plans)

Scale: NTS

1 Rendering Example | Loc 13

Scale: NTS

1455 Hays Street San Leandro, CA 94577
 510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

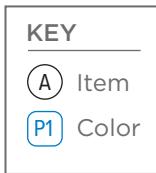
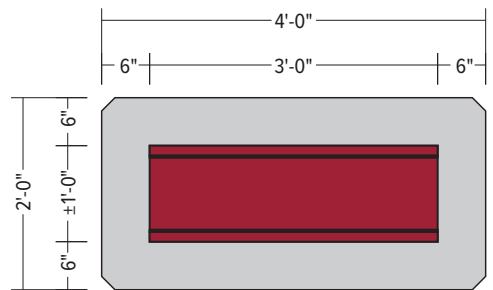
CLIENT:

PROJECT ADDRESS:

Las Positas College
 3000 Campus Hill Drive
 Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
Exterior Wayfinding Project
 Job# 3738



CREATED BY / DATE:
 MV / 2025_0217

REVISIONS BY / DATE / NOTES:
 MV 2025_0313
 MV 2025_0530
 MV 2025_0822
 MV 2025_1003
 MV 2025_1125
 MV 2025_1211
 MV 2025_0123

PROJECT PHASE:
100% Construction Intent
 For Construction Intent Only

SHEET TITLE:
BR.02
 Photo Rendering

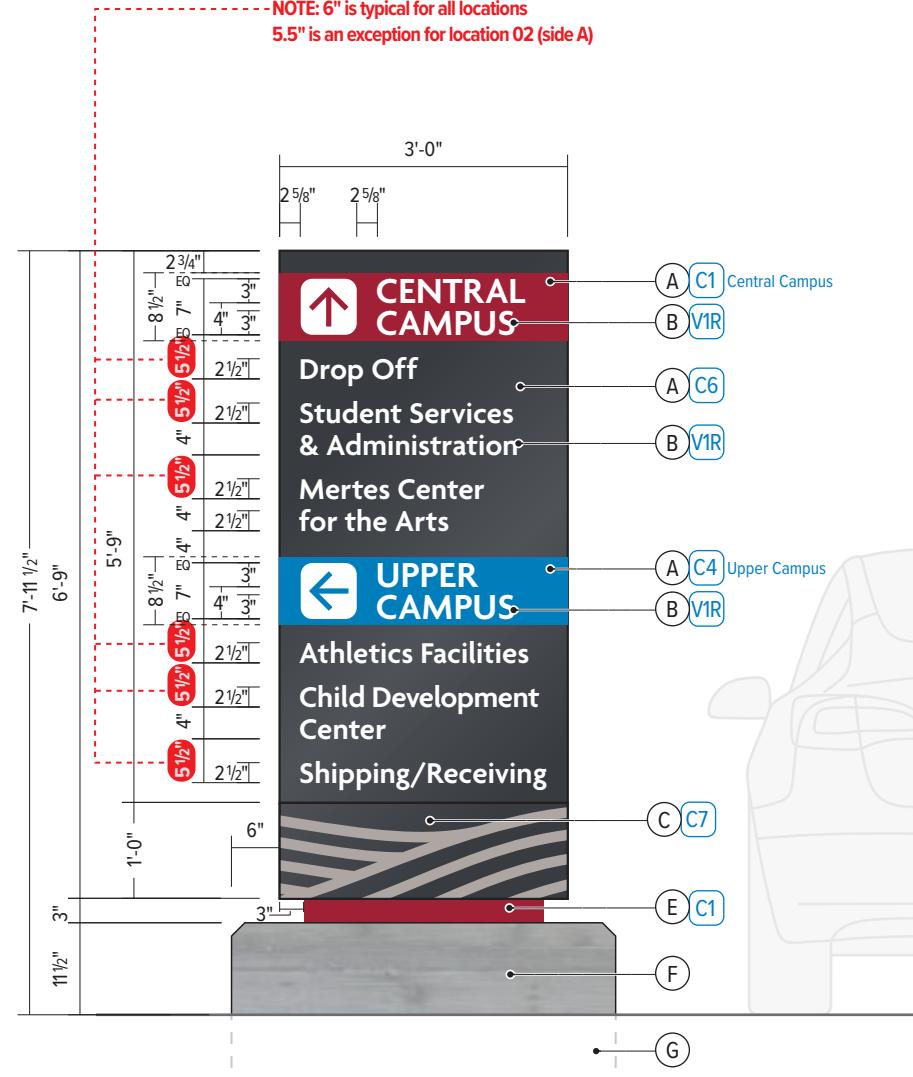
PAGE NUMBER:

A. Message Panels:
 1/8" Aluminum Removable message panels.
 Faces to be removable for future updates.
 All exposed edges to be surface painted.
 All hardware to be concealed, no exposed
 seams or fasteners on sign faces.

B. Copy and graphics:
 Surface applied contour cut reflective vinyl.
 Typeface: Agenda Semibold

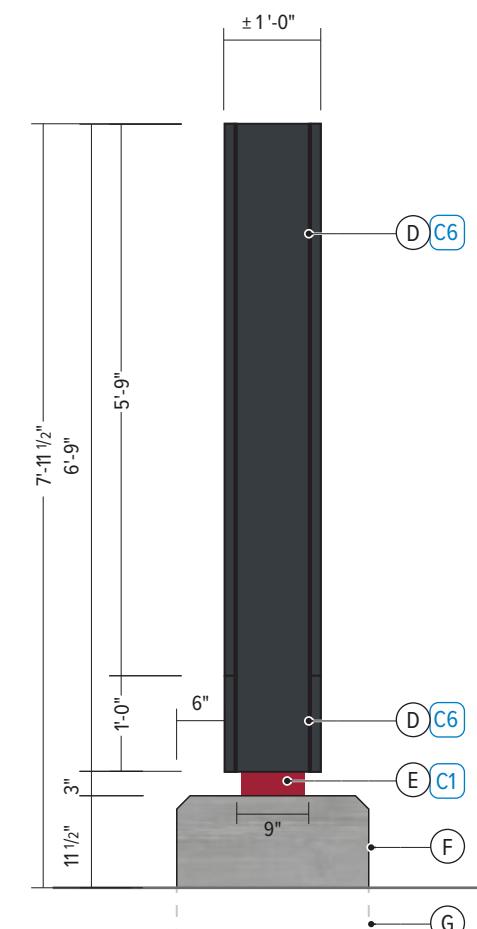
C. Pattern panel:
 All exposed edges to be surface painted.
 All hardware to be concealed, no exposed
 seams or fasteners on sign faces.
 Pattern to be surface painted using Gerber paint
 mask or approved equal.

D. SignComp or approved equal:
 Hinge body paired with flush face bleed body retainers.
 All exposed edges and hardware to be surface
 painted.


E. Alum square tube reveal, with mitered corner
 fabrication. All exposed edges to be surface
 painted.

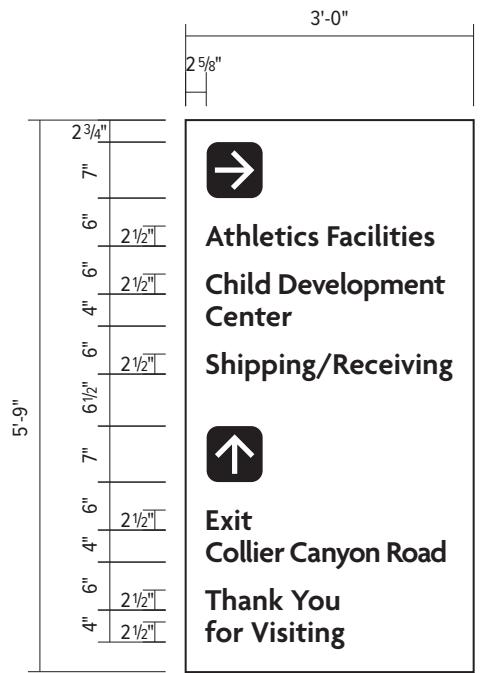
F. Board formed concrete base.
 (Fabricator to provide finish option(s) for approval).
 1" Chamfer on all exposed top edges.

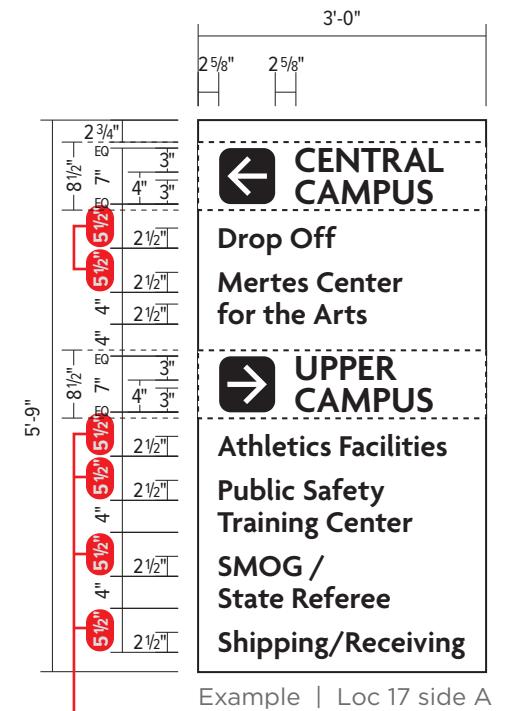
G. Footing / Attachement
 (see engineering: SGN1.1 - SGN1.3)


Note: Entire sign including main sign body, all face
 panels and copy to receive a UV, anti-graffiti coating.

Note: BID alternate price with the entire sign using
 powdercoat finish vs. matthews paint.
 (including the masked pattern)

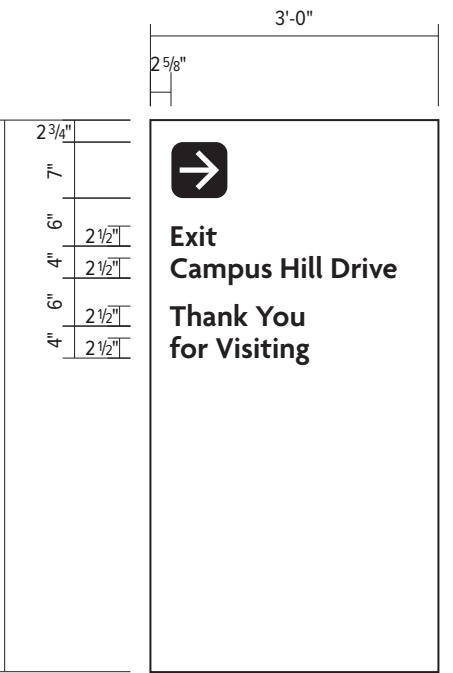
1 Elevation


Scale: 1/2" = 1'-0"

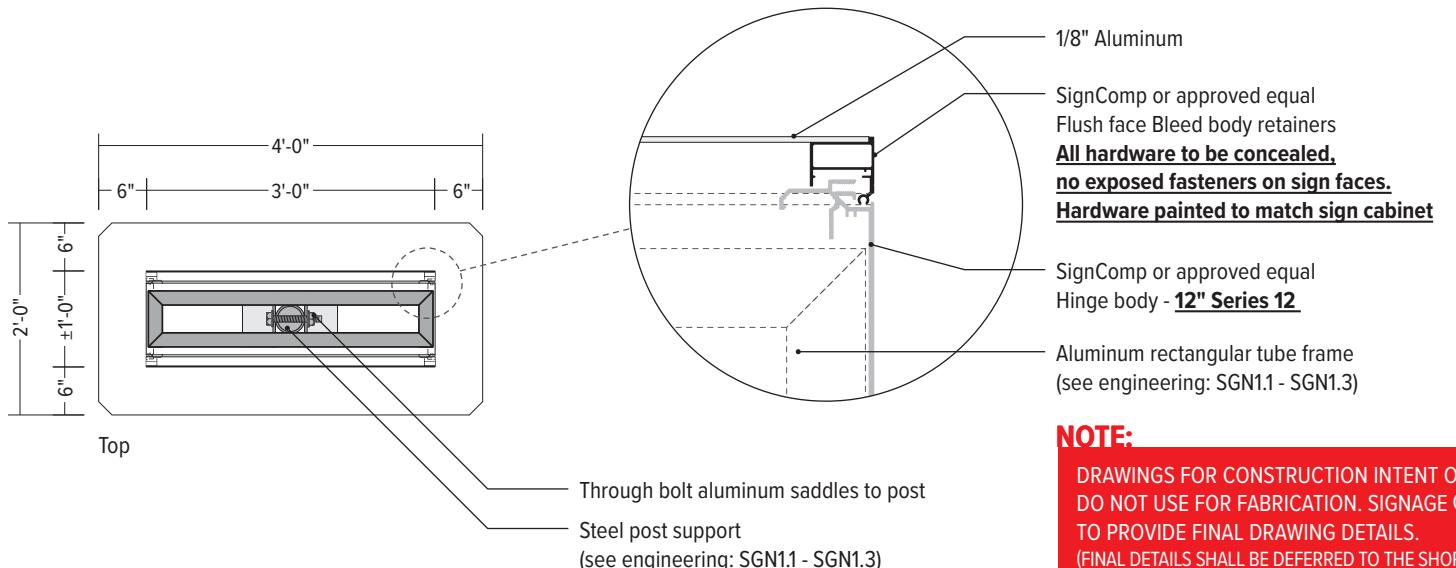

2 Side View

Scale: 3" = 1'-0"

When Programming Vehicular Directionals:
 Primary vehicular destinations are listed first



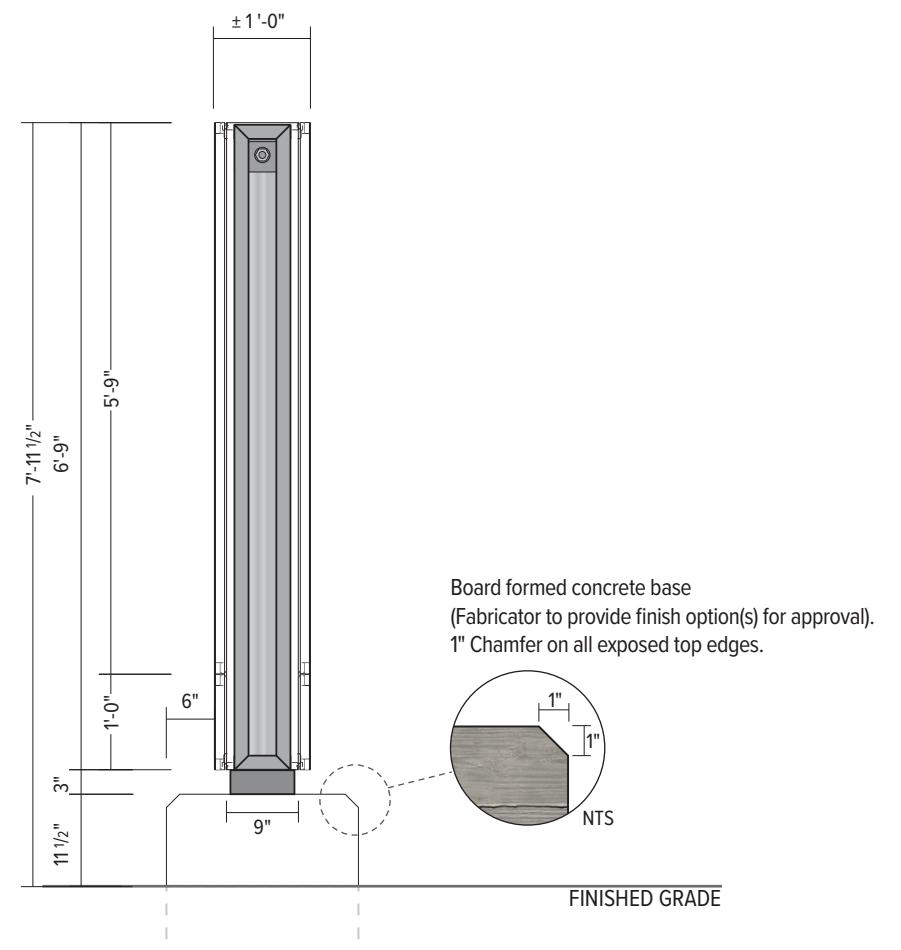
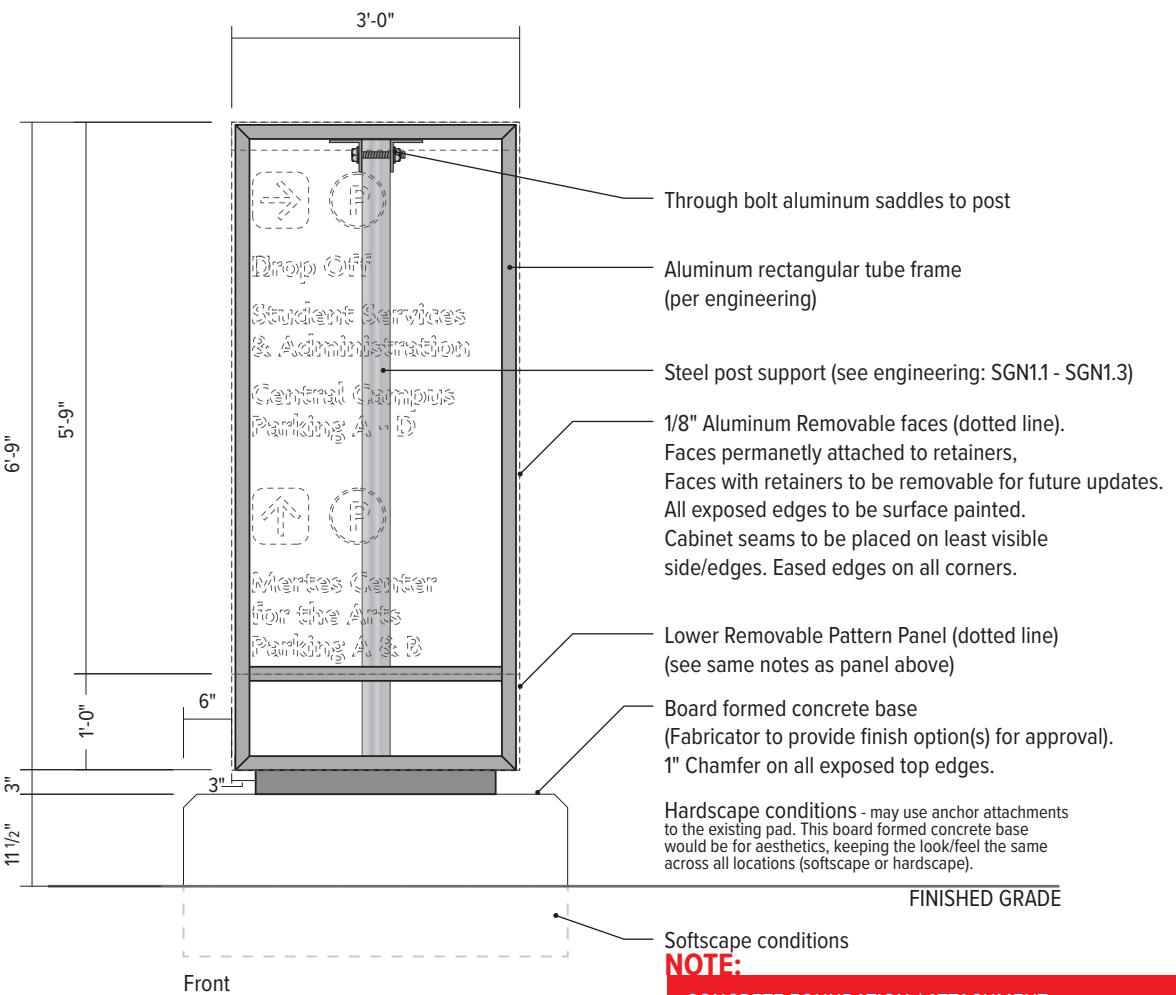
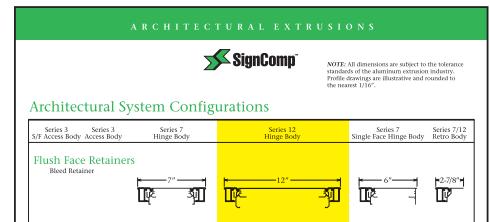
Example | Loc 02 side B



Example | Loc 17 side A

NOTE: 6" is typical for all locations
 5.5" is an exception for location 17 (side A)

Example | Loc 17 side B

NOTE:

DRAWINGS FOR CONSTRUCTION INTENT ONLY.
DO NOT USE FOR FABRICATION. SIGNAGE CONTRACTOR
TO PROVIDE FINAL DRAWING DETAILS.
(FINAL DETAILS SHALL BE DEFERRED TO THE SHOPS DRAWINGS
BY CONTRACTOR)

NOTE:

SIGN LOCATIONS TO BE COORDINATED WITH UNDERGROUND UTILITIES.
SIGN FABRICATOR IS RESPONSIBLE TO USE ERASABLE PAINT TO MARK
ALL LOCATIONS AND REFERENCE ALL UNDERGROUND UTILITIES PRIOR
TO DIGGING / INSTALLATION.

GRAPHIC CONSULTANT:

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
Exterior Wayfinding Project
Job# 3738

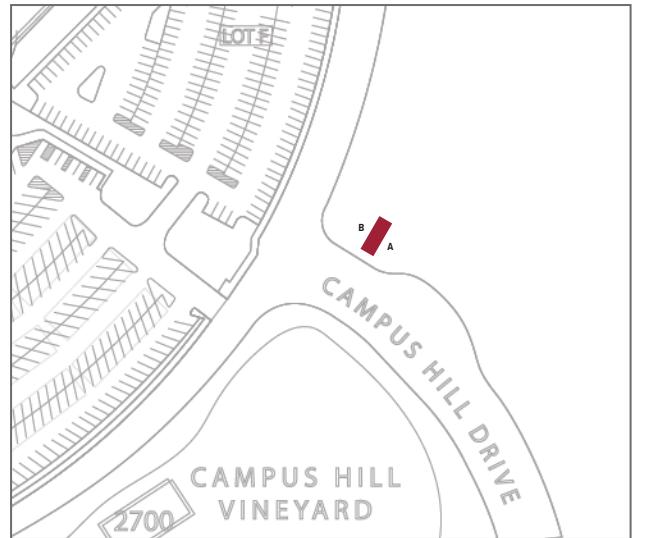
CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
Fabrication Intent
EWF.01 & EWF.01A

PAGE NUMBER:


6.9

General Note:
Reference Engineering Drawings & Calculations in Section 11

2 Existing Conditions | At Campus Hill Drive Entrance

Scale: NTS

3 Plan View | Loc 17 (see dimensioned setback plans)

Scale: NTS

NOTE:
Locations shown for
representation purpose ONLY.

For exact placement
(see dimensioned setback plans)
Pages 4.0 - 4.12

1 Rendering Example | Loc 17

Scale: NTS

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**

Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
EWF.01A
Photo Rendering

PAGE NUMBER:

6.11

2 Existing Conditions | At Collier Canyon Road Entrance

Scale: NTS

3 Plan View | Loc 02 (see dimensioned setback plans)

Scale: NTS

1 Rendering Example | Loc 02

Scale: NTS

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:

**Exterior Wayfinding
Project**

Job# 3738

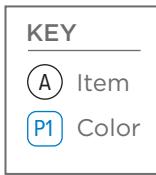
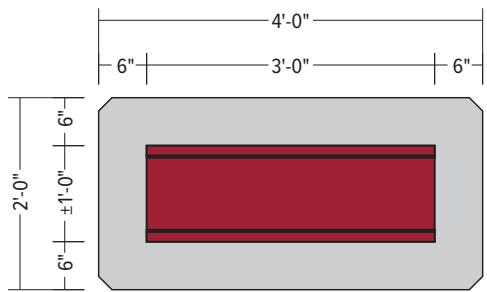
CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:

MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:

100% Construction Intent
For Construction Intent Only



SHEET TITLE:

EWF.01A
Photo Rendering

PAGE NUMBER:

6.12

NOTE:
Locations shown for
representation purpose ONLY.

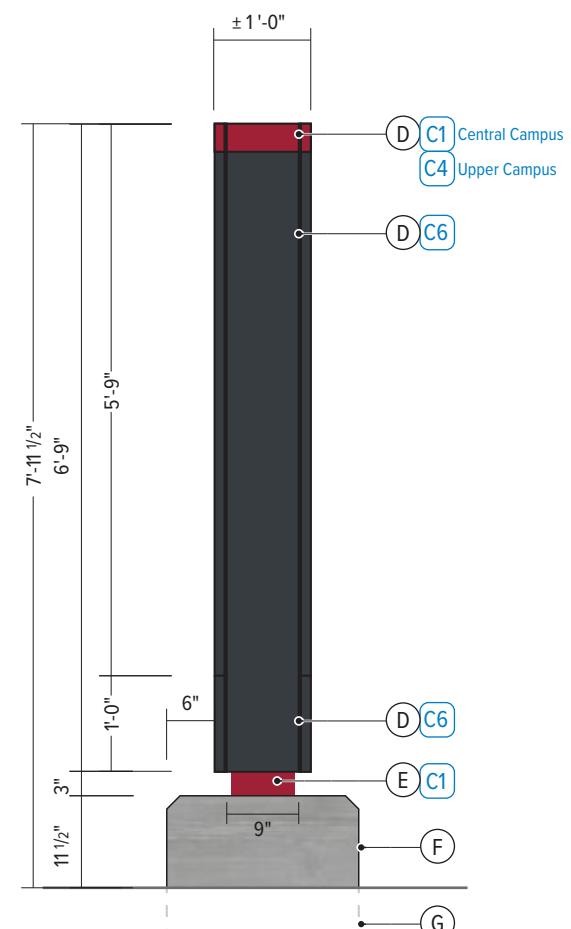
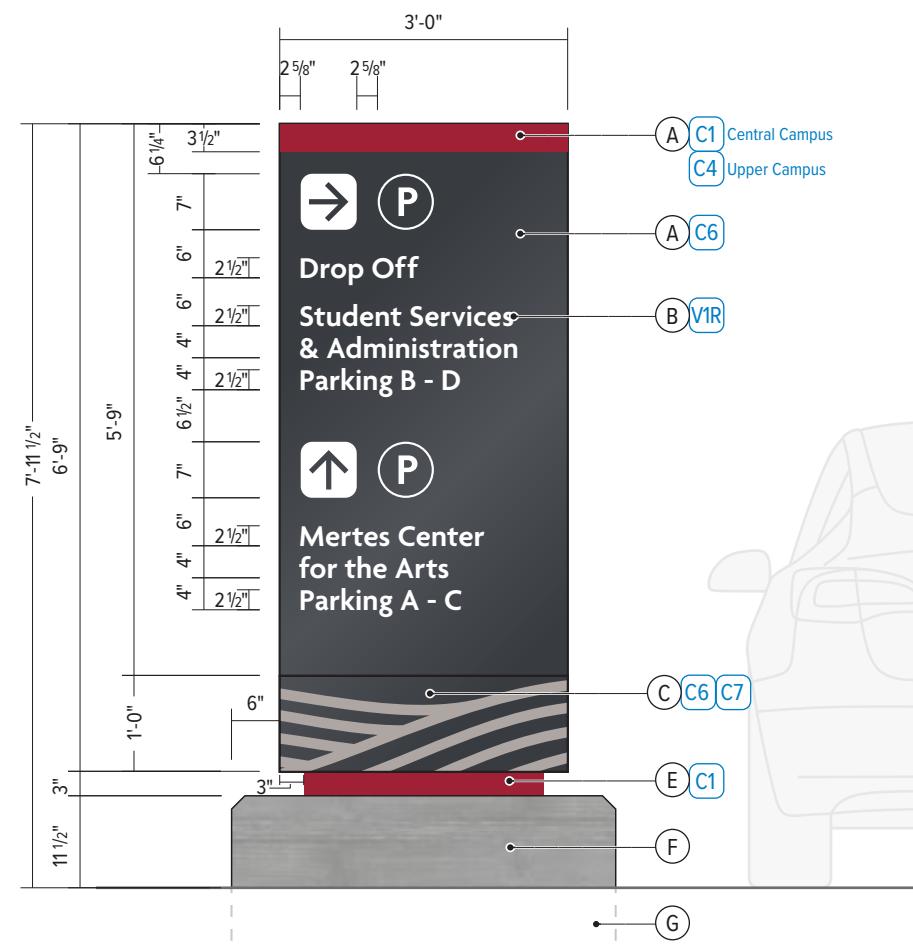
For exact placement
(see dimensioned setback plans)
Pages 4.0 - 4.12

A. Message Panels:
 1/8" Aluminum Removable message panels.
 Faces to be removable for future updates.
 All exposed edges to be surface painted.
 All hardware to be concealed, no exposed
 seams or fasteners on sign faces.

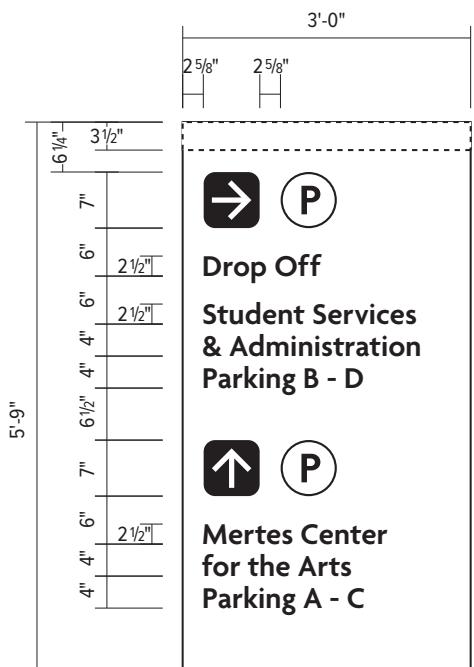
B. Copy and graphics:
 Surface applied contour cut reflective vinyl.
 Typeface: Agenda Semibold

C. Pattern panel:
 All exposed edges to be surface painted.
 All hardware to be concealed, no exposed
 seams or fasteners on sign faces.
 Pattern to be surface painted using Gerber paint
 mask or approved equal.

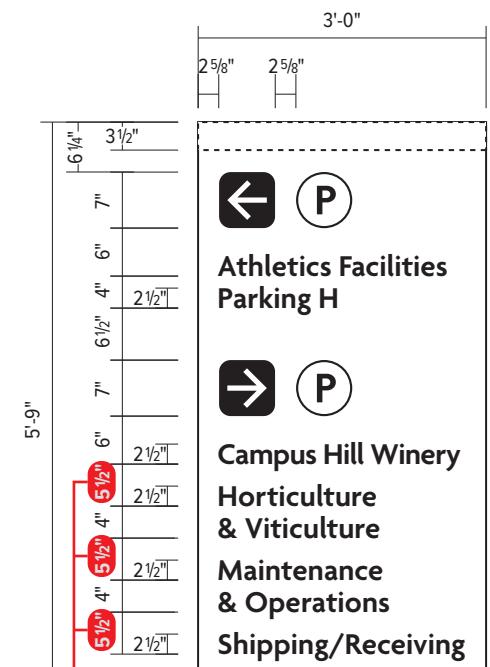
D. SignComp or approved equal:
 Hinge body paired with flush face bleed body retainers.
 All exposed edges and hardware to be surface
 painted.



E. Alum square tube reveal, with mitered corner
 fabrication. All exposed edges to be surface
 painted.

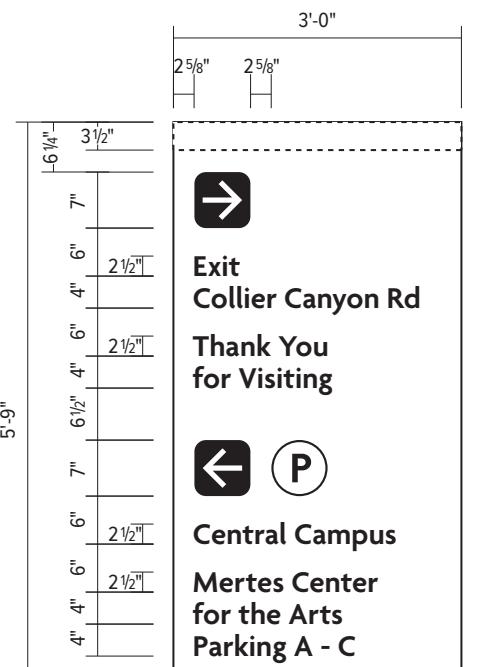
F. Board formed concrete base.
 (Fabricator to provide finish option(s) for approval).
 1" Chamfer on all exposed top edges.

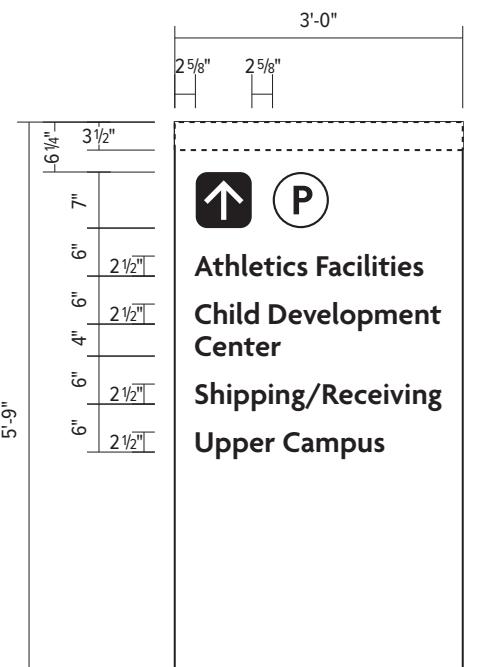

G. Footing / Attachement
 (see engineering: SGN1.1 - SGN1.3)

Note: Entire sign including main sign body, all face
 panels and copy to receive a UV, anti-graffiti coating.

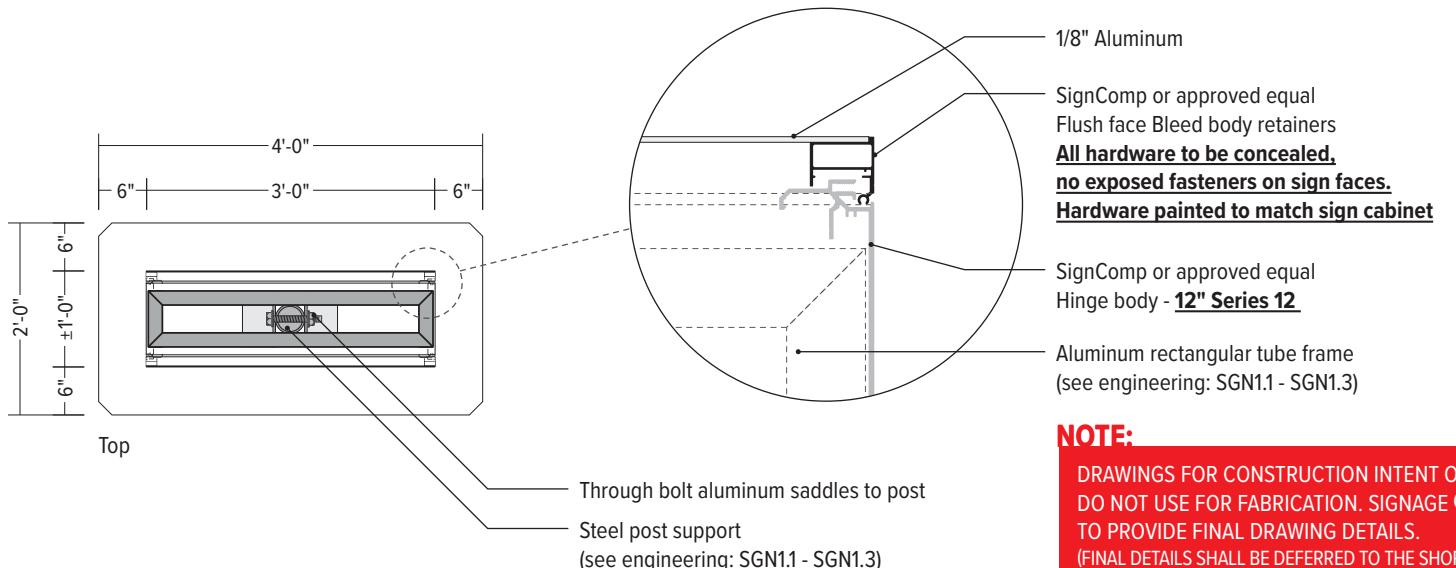

Note: BID alternate price with the entire sign using
 powdercoat finish vs. matthews paint.
 (including the masked pattern)

When Programming Vehicular Directionals:
 Primary vehicular destinations are listed first

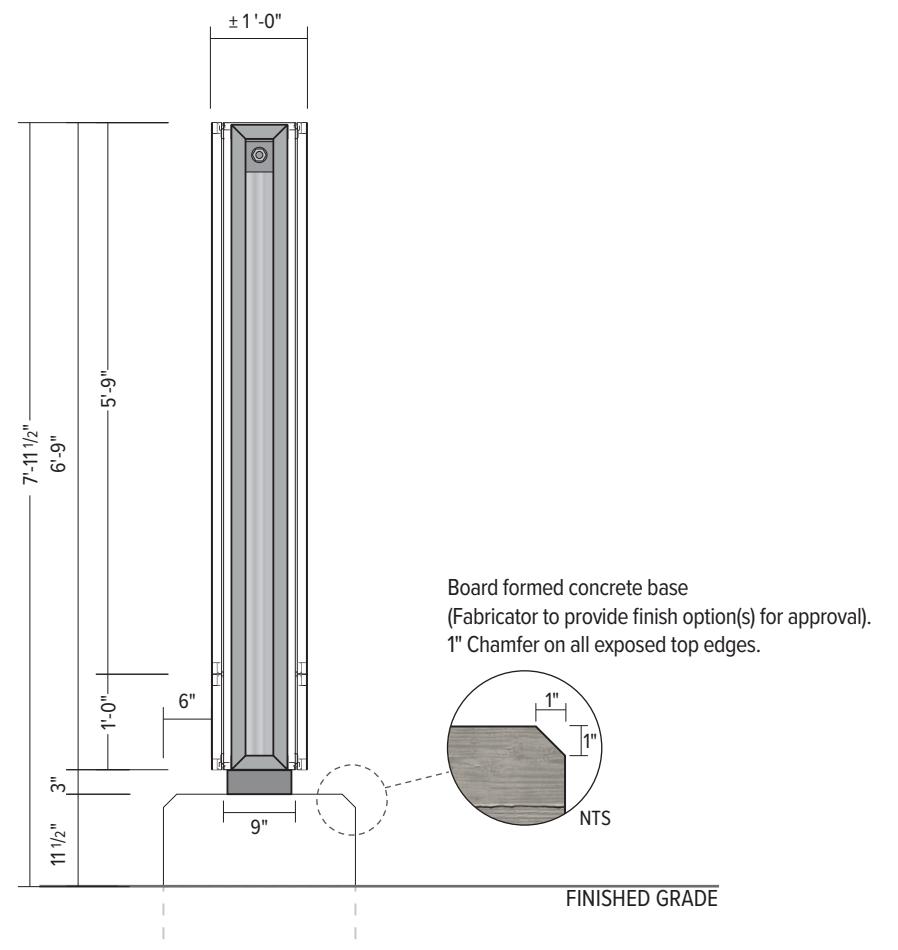
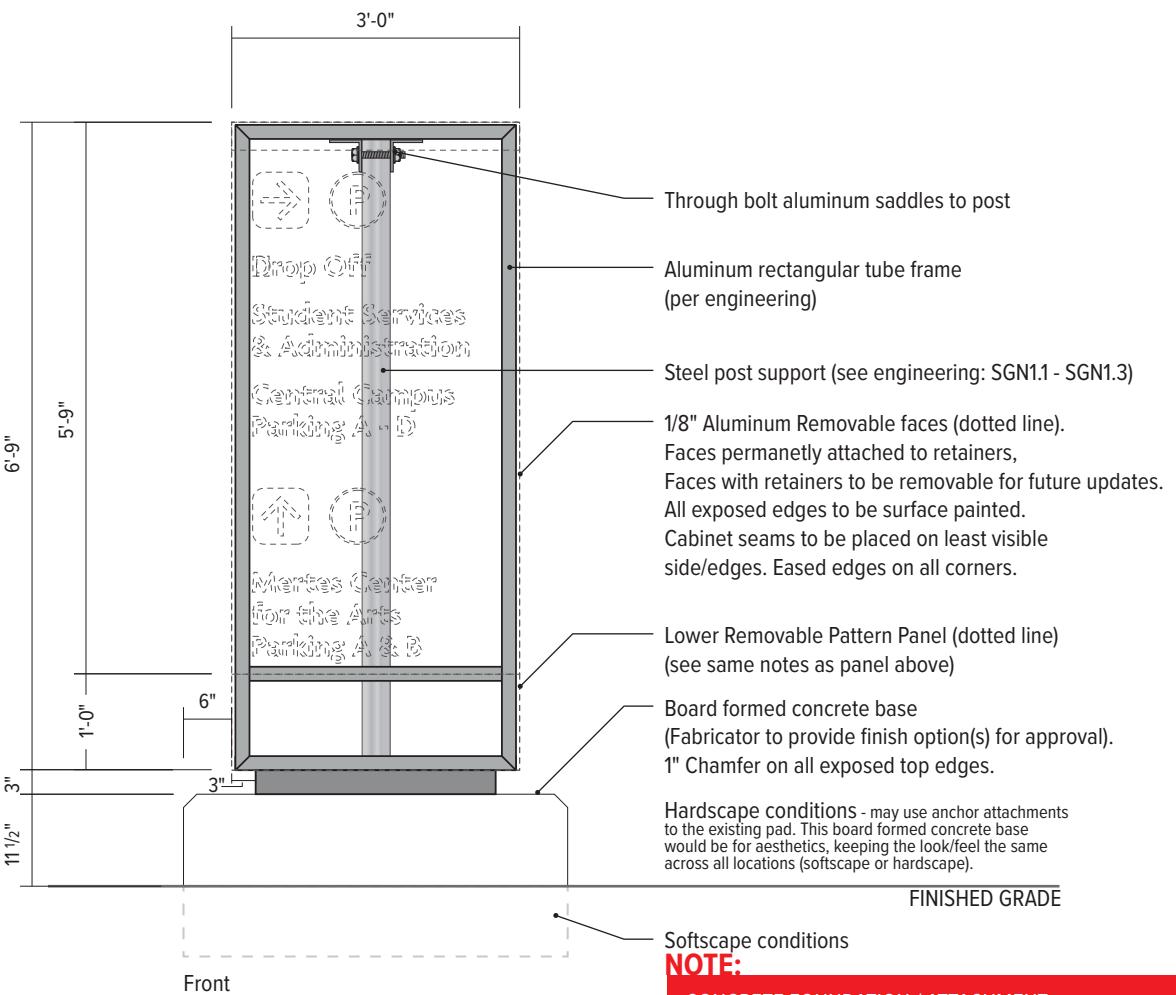
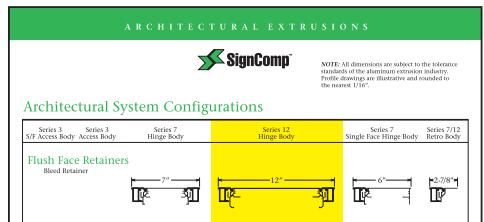

Example | Loc 14 side B


Example | Loc 23 side A

NOTE: 6" is typical for all locations
 5.5" is an exception for location 23 ONLY


NOTE: Client to confirm copy

Example | Loc 33 side B

Example | Loc 31 side A

NOTE:

SIGN LOCATIONS TO BE COORDINATED WITH UNDERGROUND UTILITIES. SIGN FABRICATOR IS RESPONSIBLE TO USE ERASABLE PAINT TO MARK ALL LOCATIONS AND REFERENCE ALL UNDERGROUND UTILITIES PRIOR TO DIGGING / INSTALLATION.

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

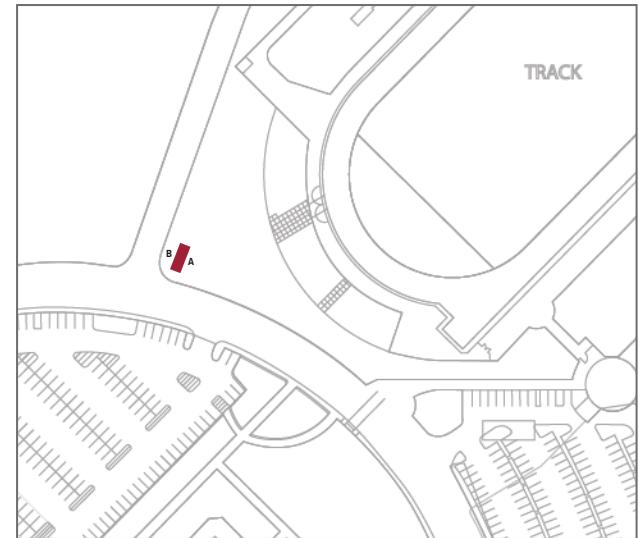
ARCHITECT:

PROJECT NAME:
Exterior Wayfinding Project
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only


SHEET TITLE:
Fabrication Intent
EWF.01 & EWF.01A

General Note:
Reference Engineering Drawings & Calculations in Section 11

2 Existing Conditions | Loc 23

Scale: NTS

3 Plan View | Loc 23 (see dimensioned setback plans)

Scale: NTS

NOTE:
Locations shown for representation purpose ONLY.
For exact placement (see dimensioned setback plans)
Pages 4.0 - 4.12

1 Rendering Example | Loc 23

Scale: NTS

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
Exterior Wayfinding Project

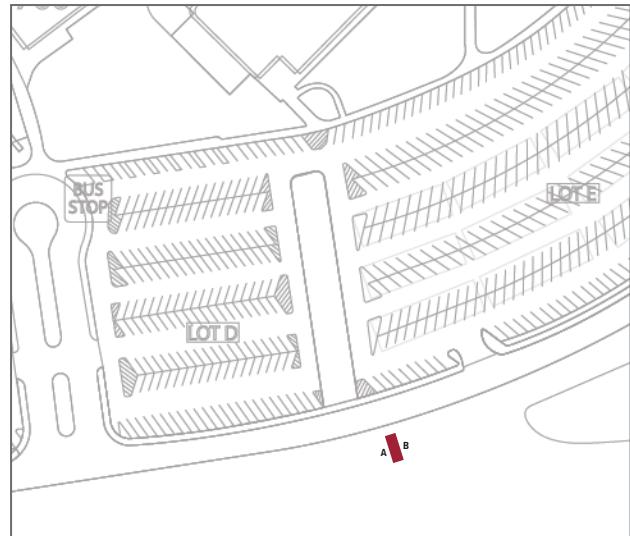
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
EWF.01
Photo Rendering


PAGE NUMBER:

6.17

2 Existing Conditions | Loc 14

Scale: NTS

3 Plan View | Loc 14 (see dimensioned setback plans)

Scale: NTS

1 Rendering Example | Loc 14

Scale: NTS

NOTE:
Locations shown for
representation purpose ONLY.

For exact placement
(see dimensioned setback plans)
Pages 4.0 - 4.12

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein
constitute the original and unpublished work of
Shannon-Leigh Associates, LLC and may not be used
without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

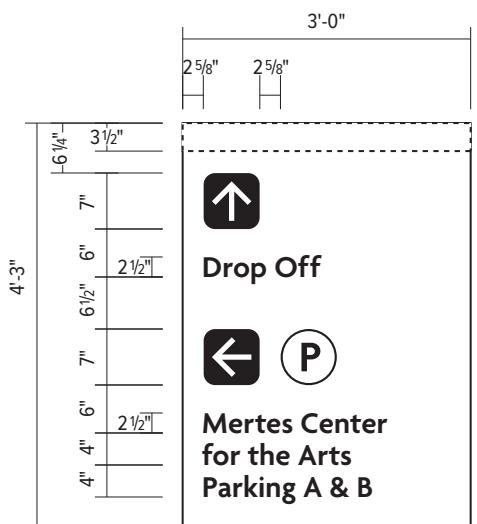
PROJECT NAME:
**Exterior Wayfinding
Project**

Job# 3738

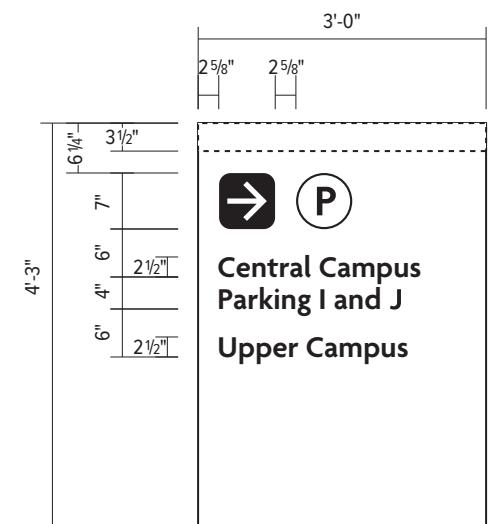
CREATED BY / DATE:
MV / 2025_0217

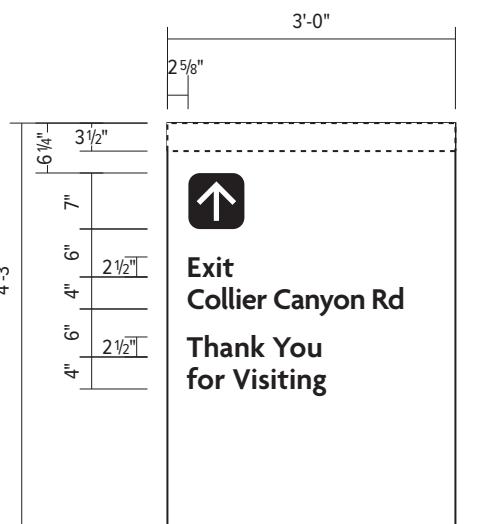
REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

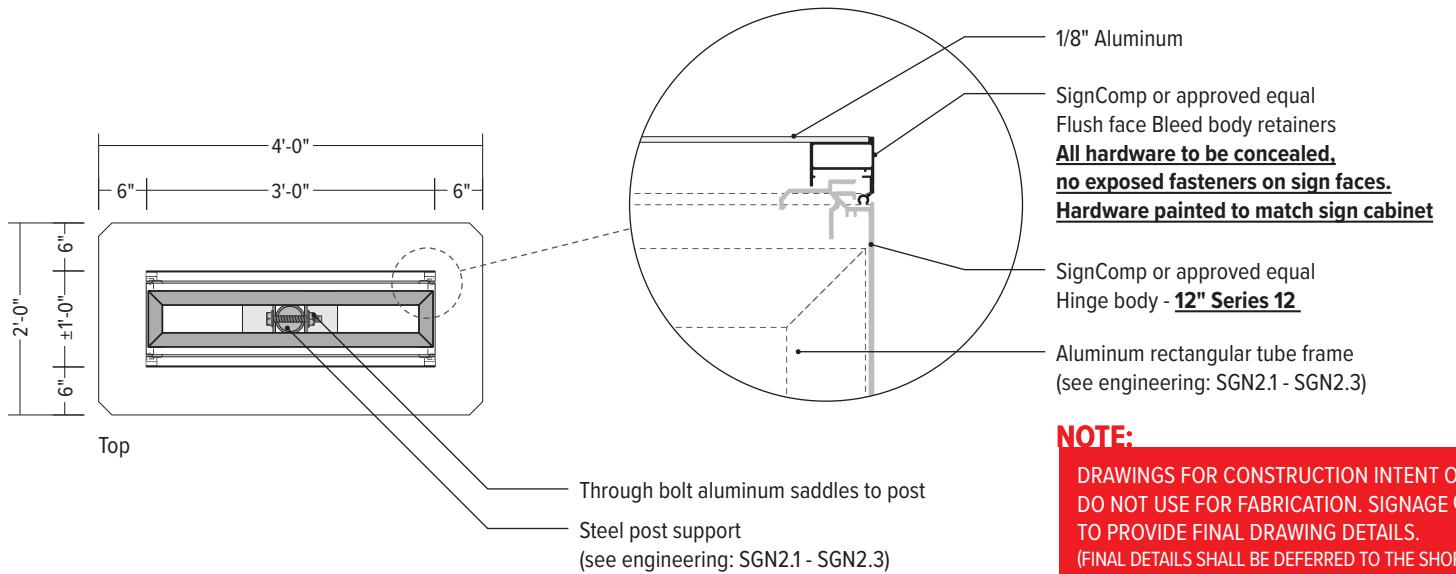
PROJECT PHASE:
100% Construction Intent
For Construction Intent Only


SHEET TITLE:
EWF.01
Photo Rendering

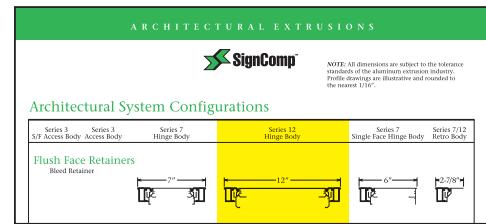
PAGE NUMBER:


6.18


When Programming Vehicular Directionals:
 Primary vehicular destinations are listed first


Example | Loc 03 side A

Example | Loc 03 side B



Example | Loc 04 side B

NOTE:

SIGN LOCATIONS TO BE COORDINATED WITH UNDERGROUND UTILITIES. SIGN FABRICATOR IS RESPONSIBLE TO USE ERASABLE PAINT TO MARK ALL LOCATIONS AND REFERENCE ALL UNDERGROUND UTILITIES PRIOR TO DIGGING / INSTALLATION.

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

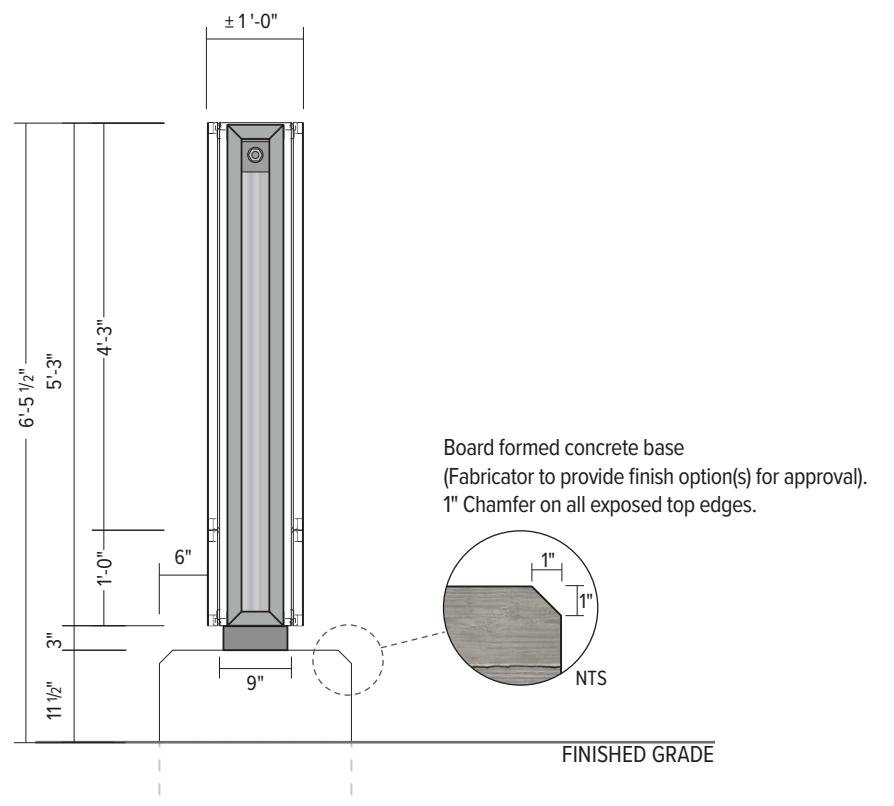
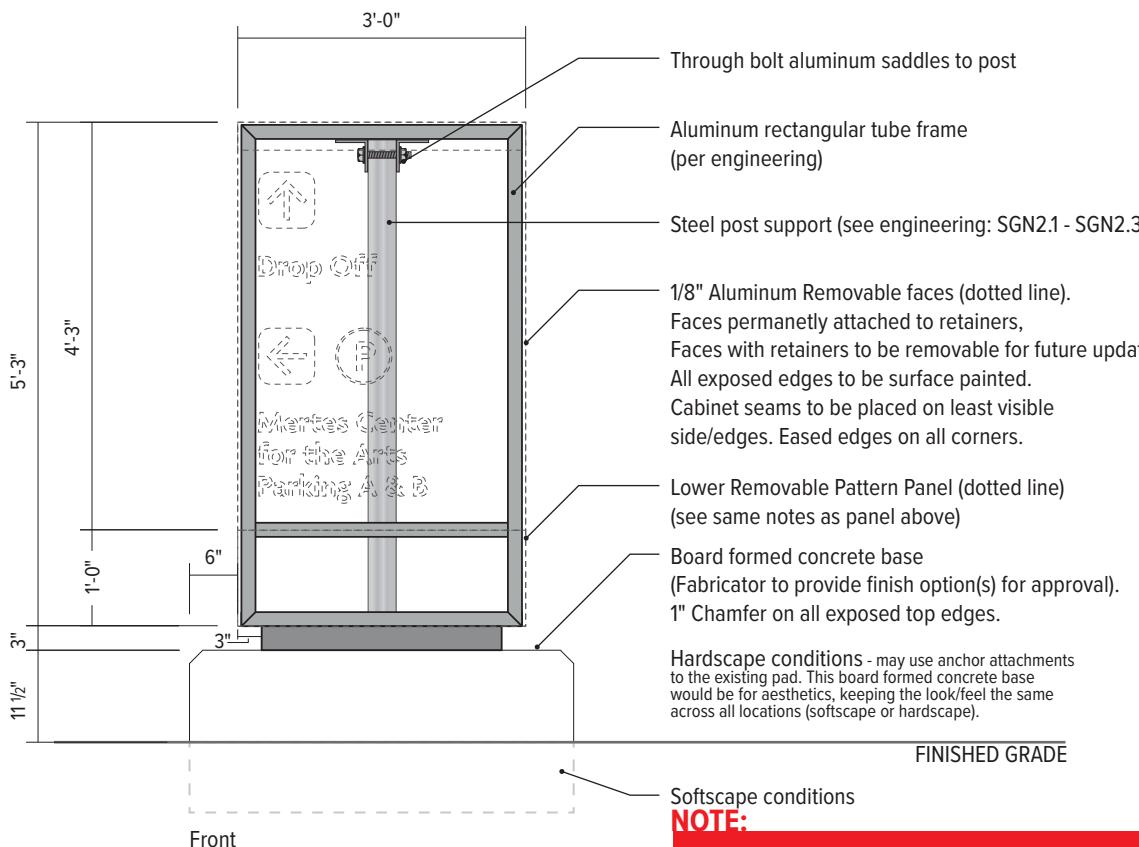
PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
Exterior Wayfinding Project
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

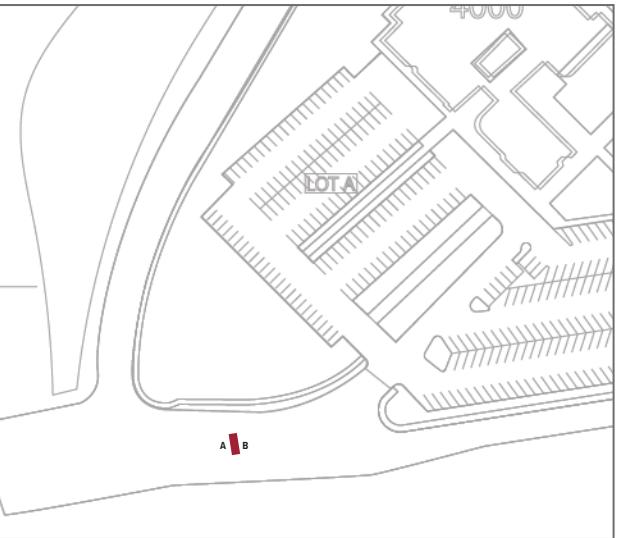


REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
Fabrication Intent
EWF.02

PAGE NUMBER:

6.21



General Note:
Reference Engineering Drawings & Calculations in Section 11

2 Existing Conditions | Loc 03

Scale: NTS

3 Plan View | Loc 03 (see dimensioned setback plans)

Scale: NTS

1 Rendering Example | Loc 03

Scale: NTS

NOTE:
Locations shown for representation purpose ONLY.
For exact placement (see dimensioned setback plans)
Pages 4.0 - 4.12

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

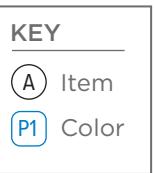
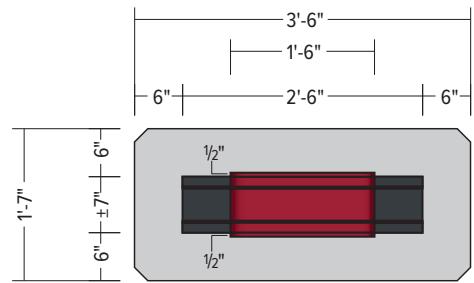
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
Exterior Wayfinding Project

Job# 3738

CREATED BY / DATE:
MV / 2025_0217



REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
EWF.02
Photo Rendering

PAGE NUMBER:

6.23

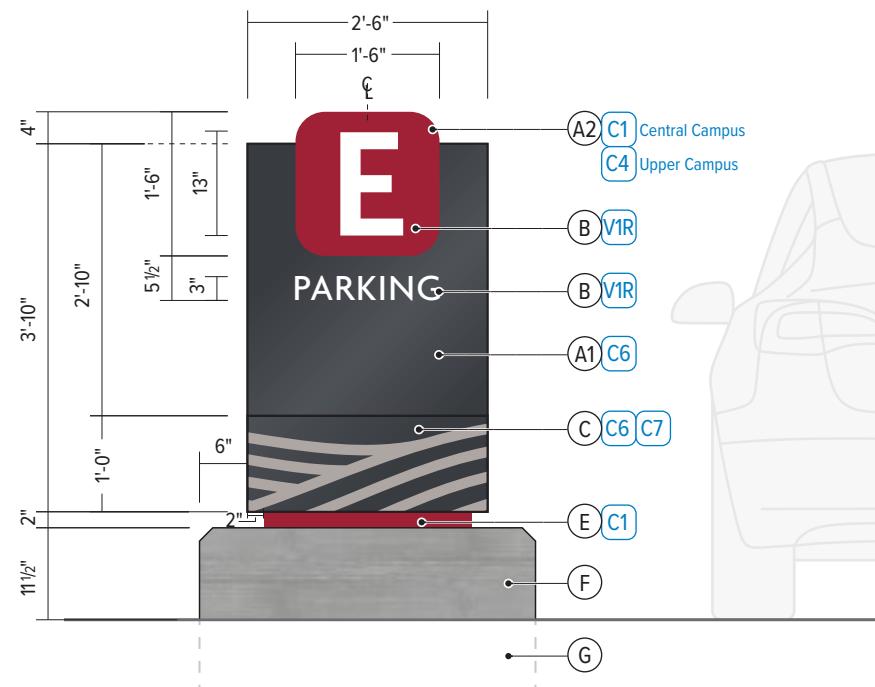
A1. Message Panels:
1/8" Aluminum Removable message panels.
Faces to be removable for future updates.
All exposed edges to be surface painted.
All hardware to be concealed, no exposed
seams or fasteners on sign faces.

A2. Icon ID Panels:
1/2" Aluminum Removable panels.
Part A2 attached to part A1,
All exposed edges to be surface painted.
All hardware to be concealed, no exposed
seams or fasteners on sign faces.

B. Copy and graphics:
Surface applied contour cut reflective vinyl.
Typeface: Agenda Semibold and Medium.

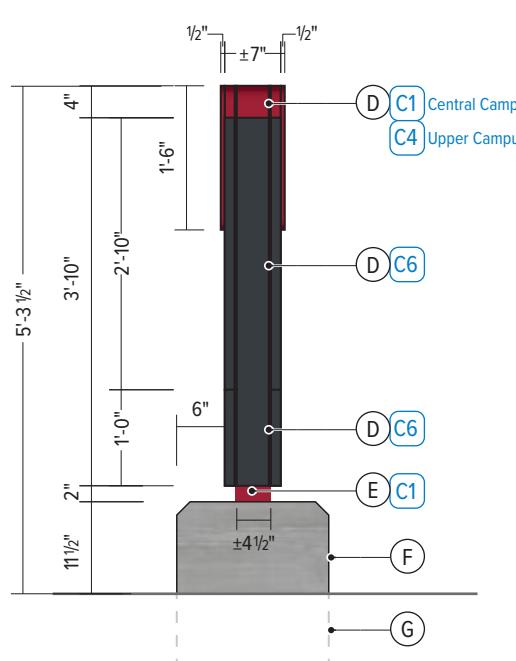
C. Pattern panel:
All exposed edges to be surface painted.
All hardware to be concealed, no exposed
seams or fasteners on sign faces.
Pattern to be surface painted using Gerber paint
mask or approved equal.

D. SignComp or approved equal:
Hinge body paired with flush face bleed body retainers.
All exposed edges and hardware to be surface
painted.

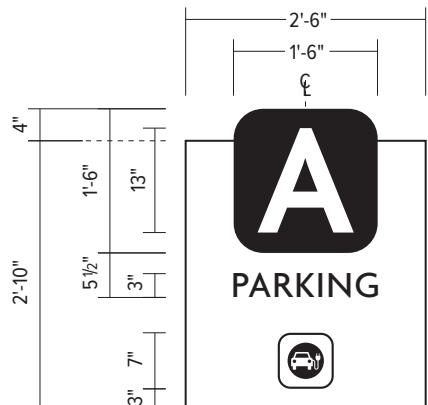

E. Alum square tube reveal, with mitered corner
fabrication. All exposed edges to be surface
painted.

F. Board formed concrete base.
(Fabricator to provide finish option(s) for approval).
1" Chamfer on all exposed top edges.

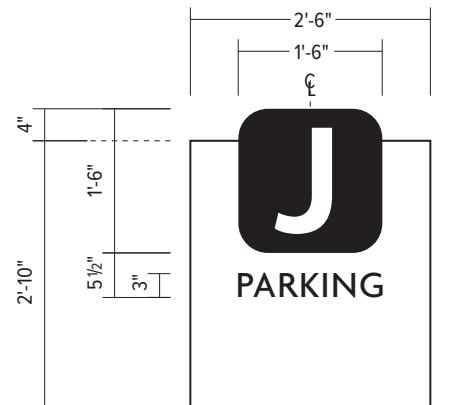
G. Footing / Attachement
(see engineering: SGN3.1 - SGN3.3)


Note: Entire sign including main sign body, all face
panels and copy to receive a UV, anti-graffiti coating.

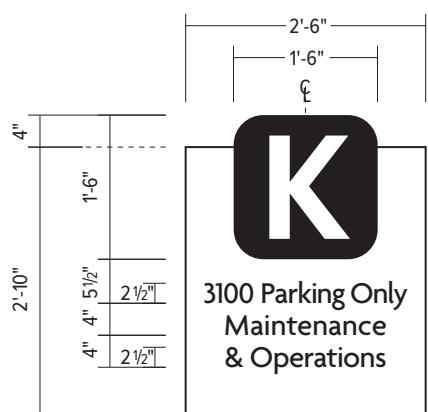
Note: BID alternate price with the entire sign using
powdercoat finish vs. matthews paint.
(including the masked pattern)

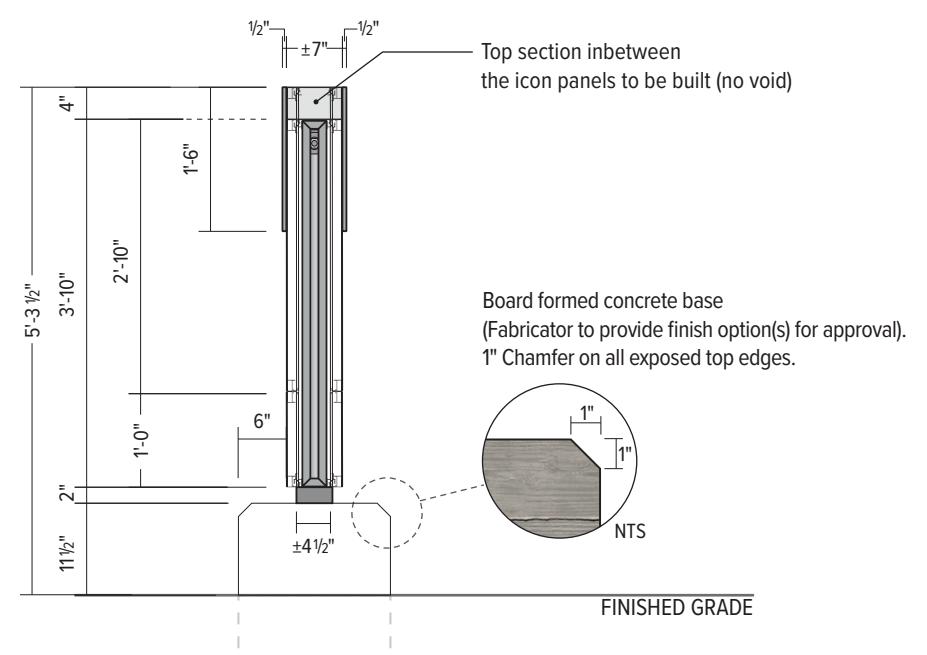
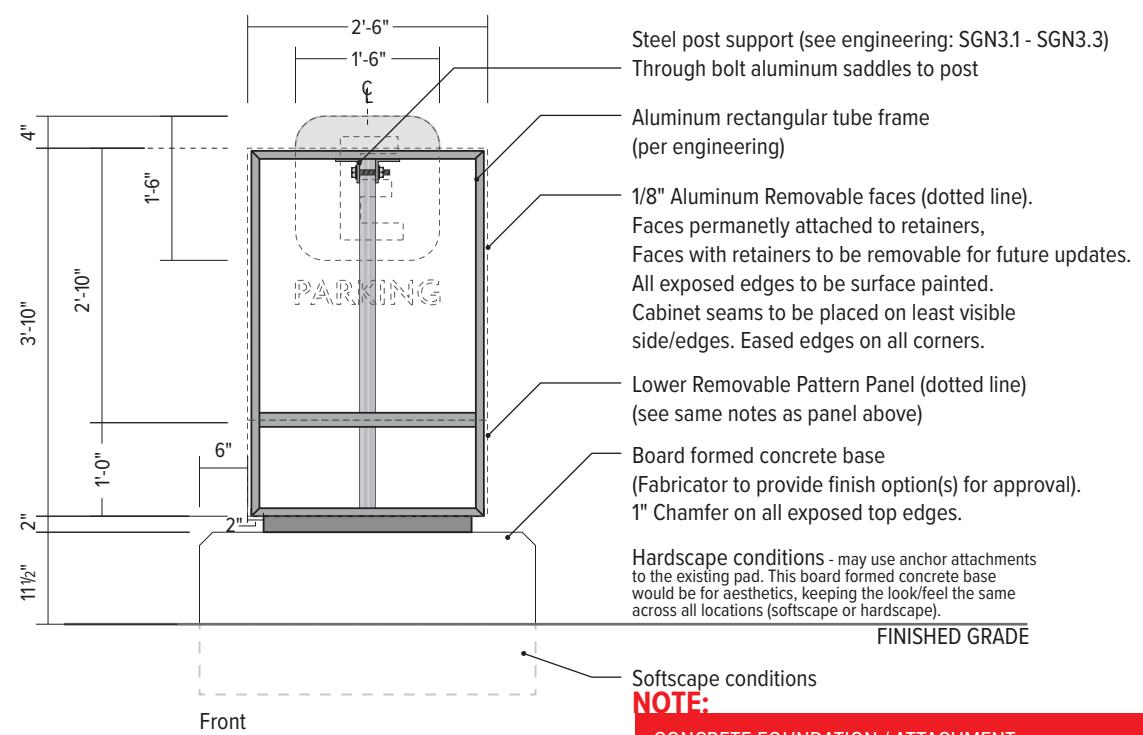
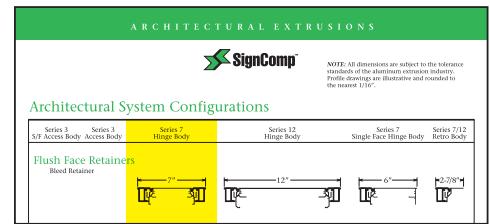
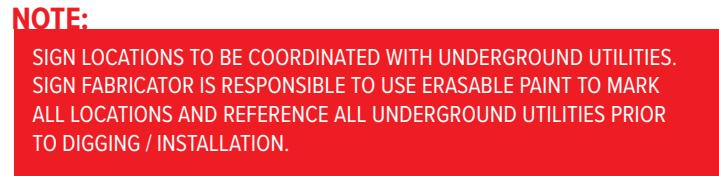
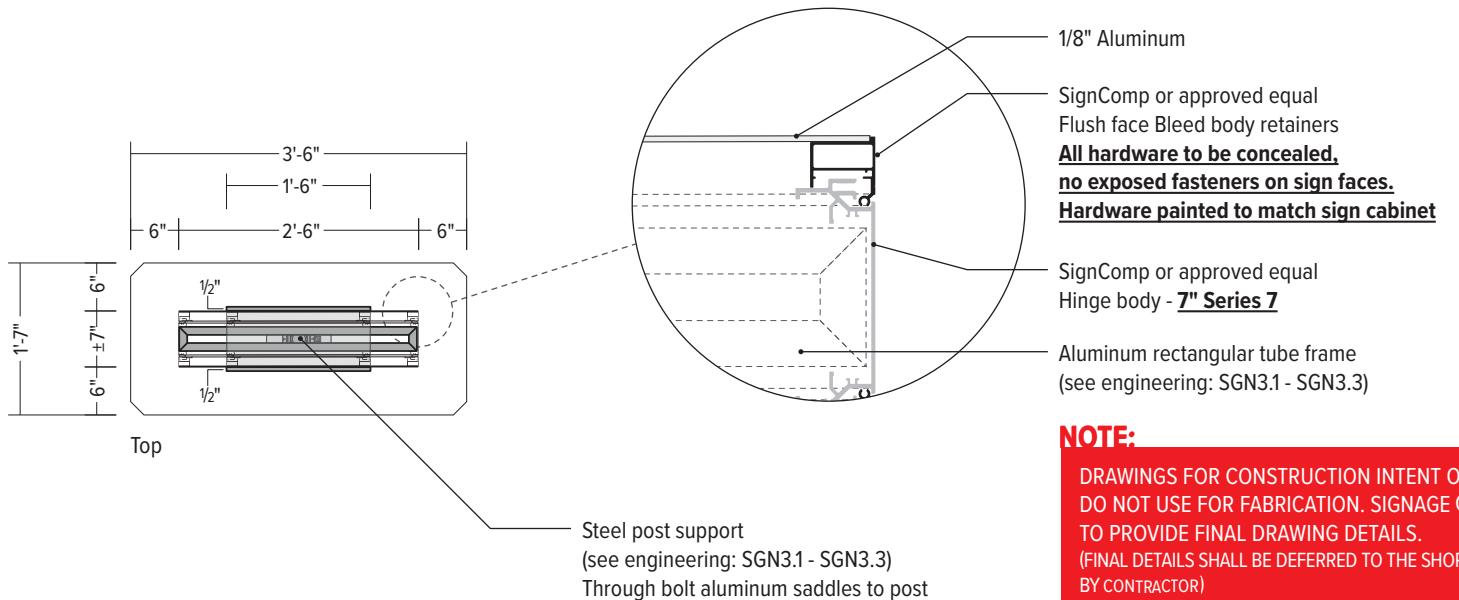

1 Elevation

Scale: 1/2" = 1'-0"



2 Side View


Scale: 1/2" = 1'-0"






Example | Loc 04.1

Example | Loc 31.1

Example | Loc 26

1 PID.01 Fabrication Intent

Scale: 1/2" = 1'-0"

GRAPHIC CONSULTANT:
 SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

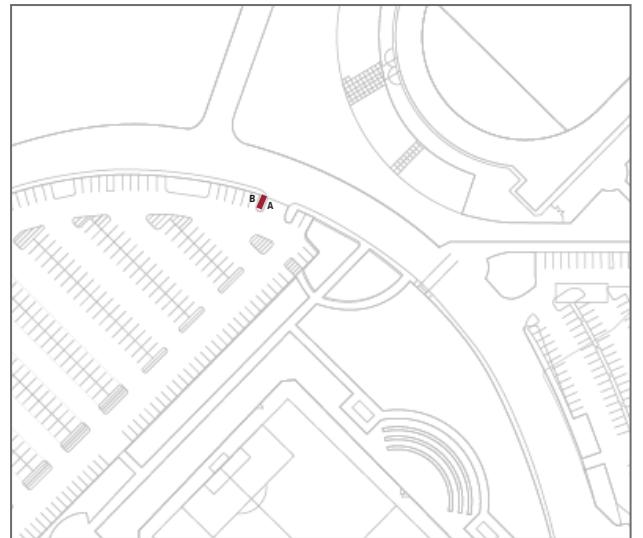
PROJECT NAME:
**Exterior Wayfi
Project**

CREATED BY / DATE:
MV / 2025_0217

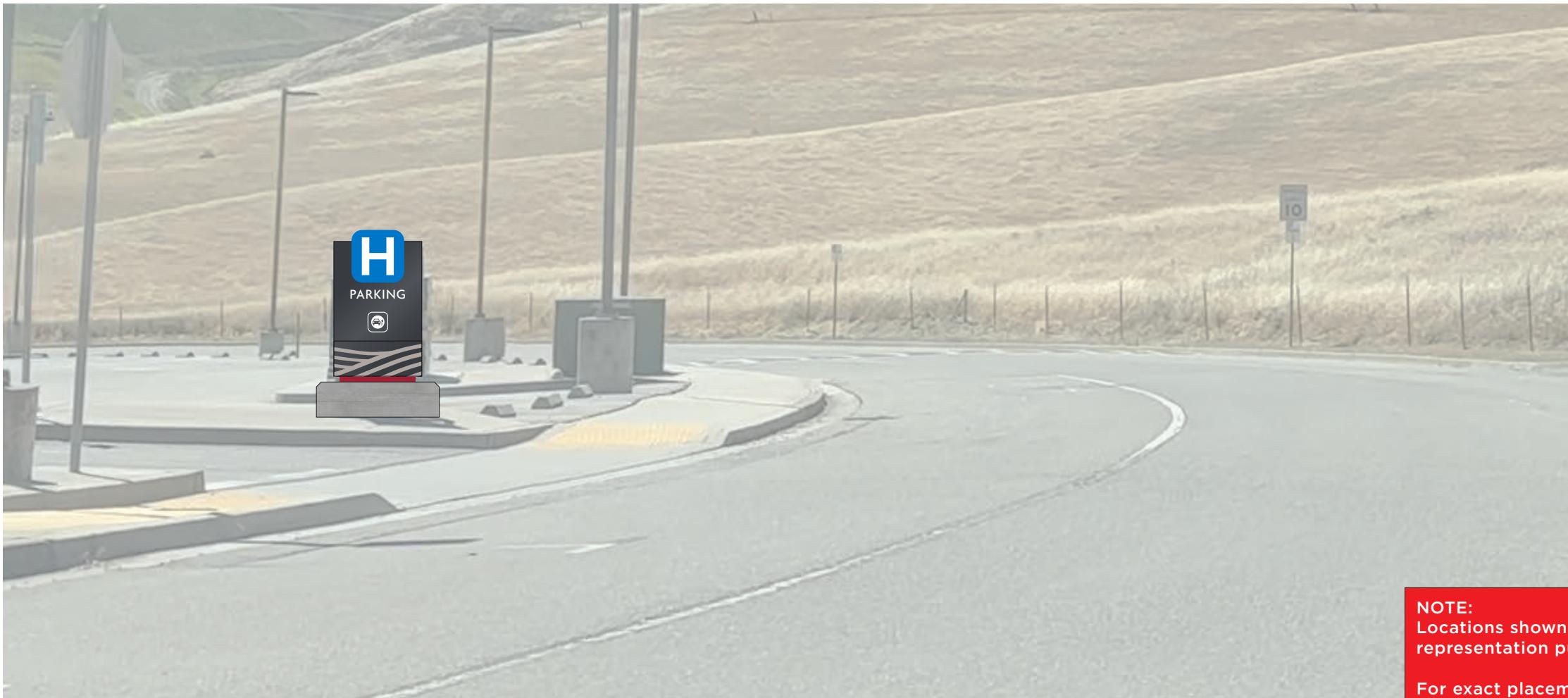
REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE: **100% Construction Intent** For Construction Intent Only

SHEET TITLE:


PAGE NUMBER:

General Note:
Reference Engineering Drawings & Calculations in Section 11


2 Existing Conditions | Loc 24.1

Scale: NTS

3 Plan View | Loc 24.1 (see dimensioned setback plans)

Scale: NTS

1 Rendering Example | Loc 24.1

Scale: NTS

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**

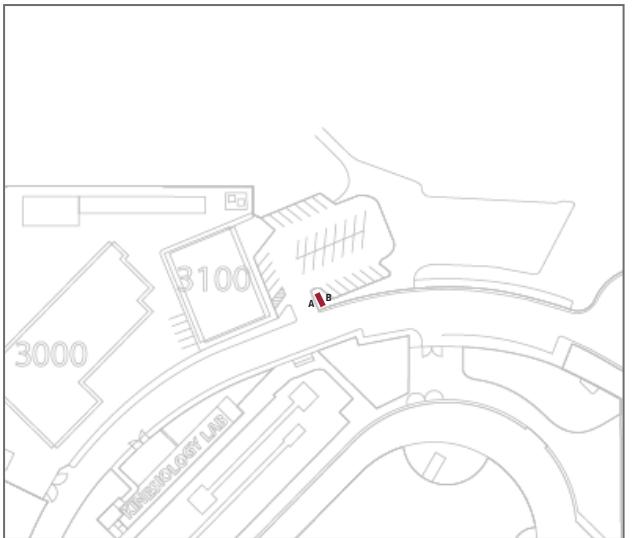
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
PID.01
Photo Rendering


PAGE NUMBER:

6.28

2 Existing Conditions | Loc 26

Scale: NTS

3 Plan View | Loc 26 (see dimensioned setback plans)

Scale: NTS

1 Rendering Example | Loc 26

Scale: NTS

NOTE:
Locations shown for
representation purpose ONLY.

For exact placement
(see dimensioned setback plans)
Pages 4.0 - 4.12

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein
constitute the original and unpublished work of
Shannon-Leigh Associates, LLC and may not be used
without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**

Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
PID.01
Photo Rendering

PAGE NUMBER:

6.29

[Intentionally Blank]

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
PID.02
Pole Mount
Parking Lot ID

PAGE NUMBER:

6.30

6.30

[Intentionally Blank]

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
PID.02
Alternate Copy Layouts

PAGE NUMBER:

6.31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

[Intentionally Blank]

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

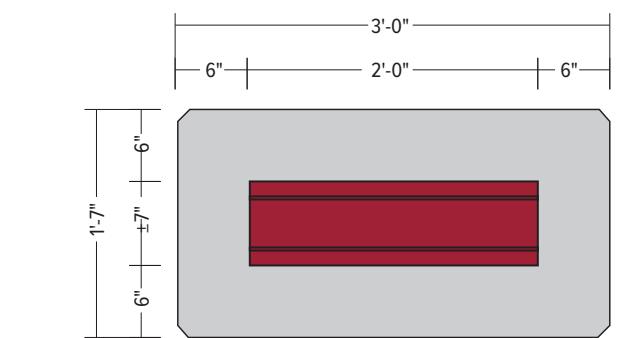
ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only


SHEET TITLE:
Fabrication Intent
PID.02

PAGE NUMBER:

6.32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

[Intentionally Blank]

KEY	
A	Item
P1	Color

A. Message Panels:
1/8" Aluminum Removable message panels.
Faces to be removable for future updates.
All exposed edges to be surface painted.
All hardware to be concealed, no exposed
seams or fasteners on sign faces.

B. Copy and graphics:
Surface applied contour cut reflective vinyl.
Typeface: Agenda Regular.

C. Pattern panel:
All exposed edges to be surface painted.
All hardware to be concealed, no exposed
seams or fasteners on sign faces.
Pattern to be surface painted using Gerber paint
mask or approved equal.

D. SignComp or approved equal:
Hinge body paired with flush face bleed body retainers.
All exposed edges and hardware to be surface
painted.

E. Alum square tube reveal, with mitered corner
fabrication. All exposed edges to be surface
painted.

F. Board formed concrete base.
(Fabricator to provide finish option(s) for approval).
1" Chamfer on all exposed top edges.

G. Footing / Attachement
(see engineering: SGN5.1 - SGN5.3)

Note: Entire sign including main sign body, all face
panels and copy to receive a UV, anti-graffiti coating.

Note: BID alternate price with the entire sign using
powdercoat finish vs. matthews paint.
(including the masked pattern)

GRAPHIC CONSULTANT:

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein
constitute the original and unpublished work of
Shannon-Leigh Associates, LLC and may not be used
without prior written consent. © 2026

CLIENT:

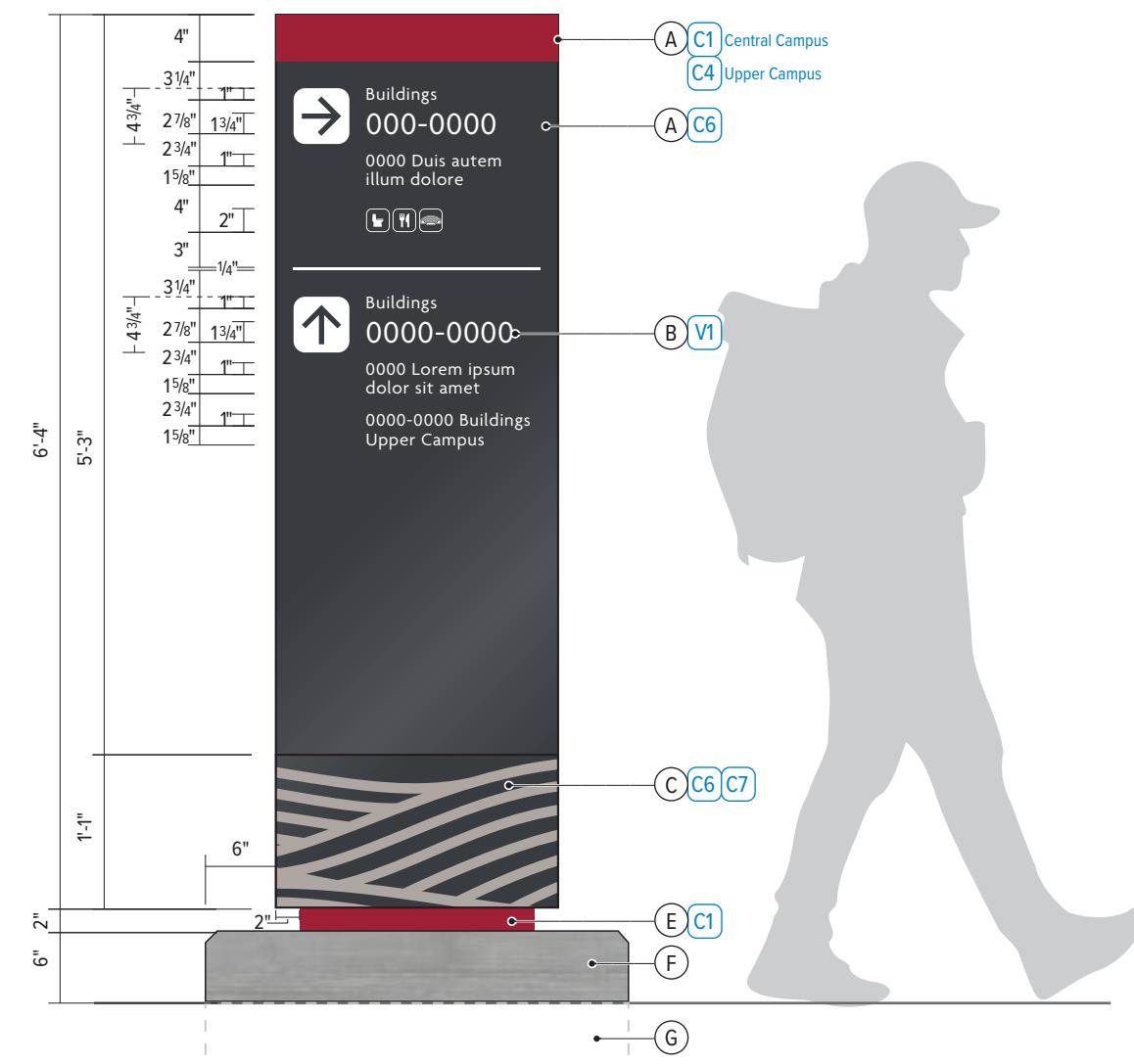
PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

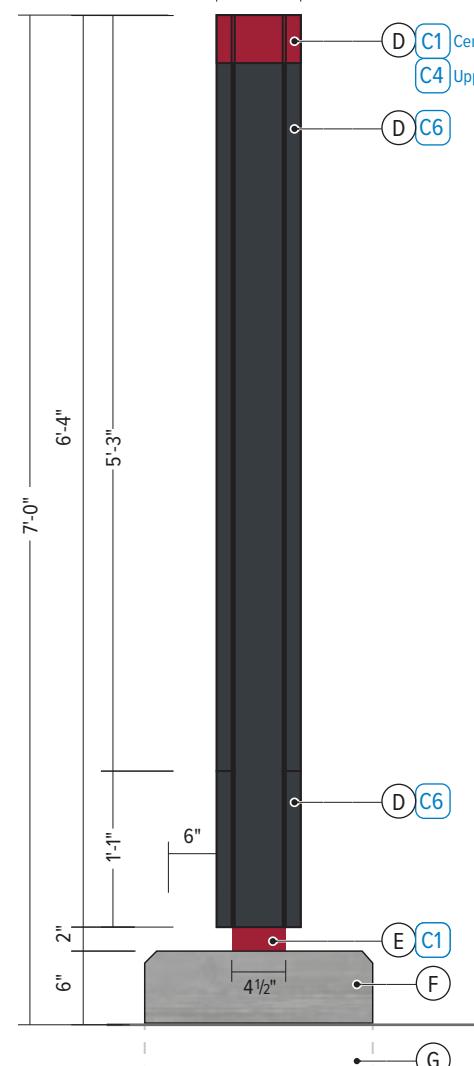
PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

CREATED BY / DATE:
MV / 2025_0217


REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

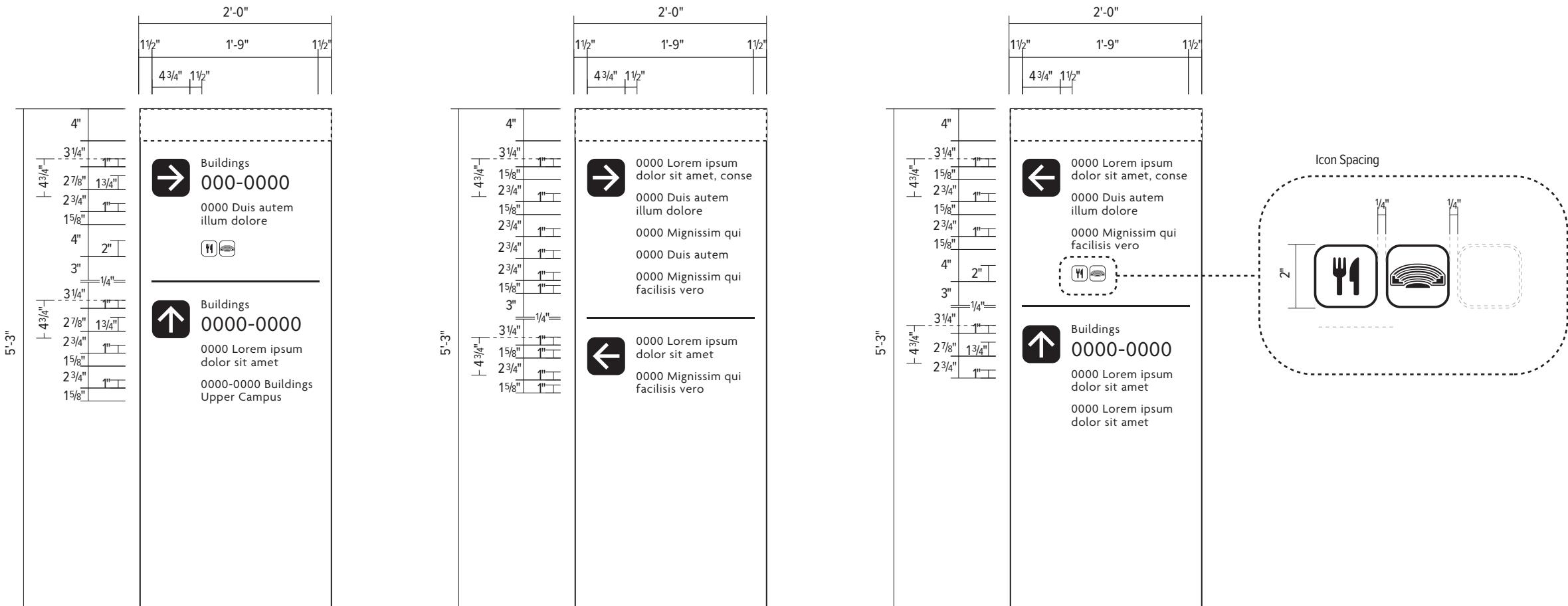
PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

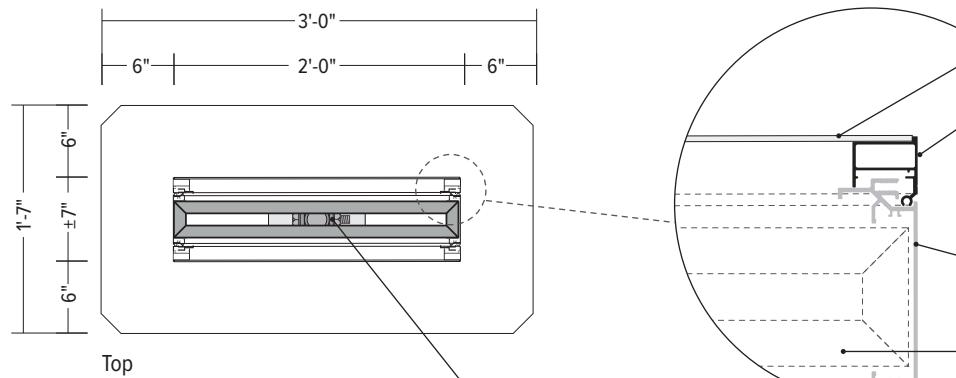
SHEET TITLE:
EWF.10
Primary Pedestrian Directional
Double Sided


PAGE NUMBER:

6.34

1 Elevation

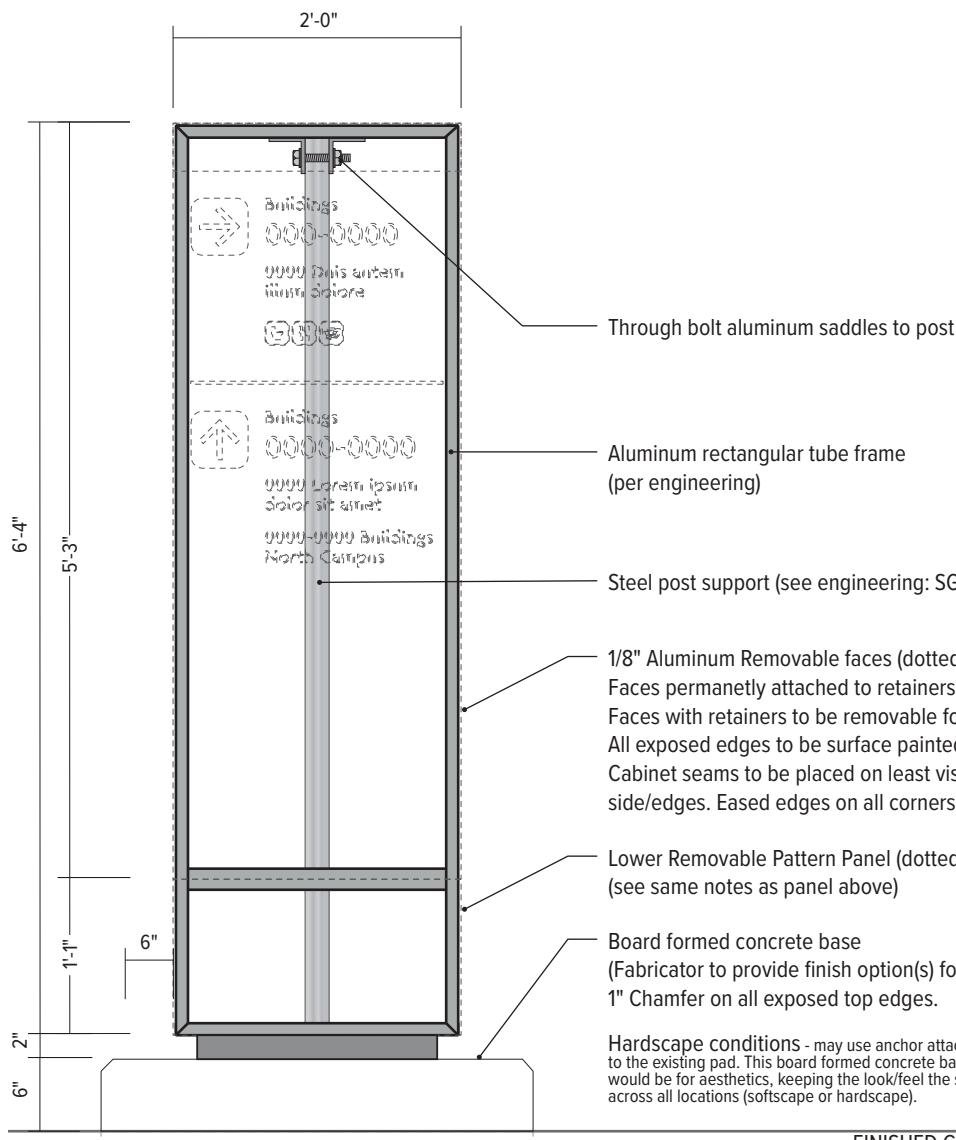

Scale: 3/4" = 1'-0"



2 Side View

Scale: 3/4" = 1'-0"

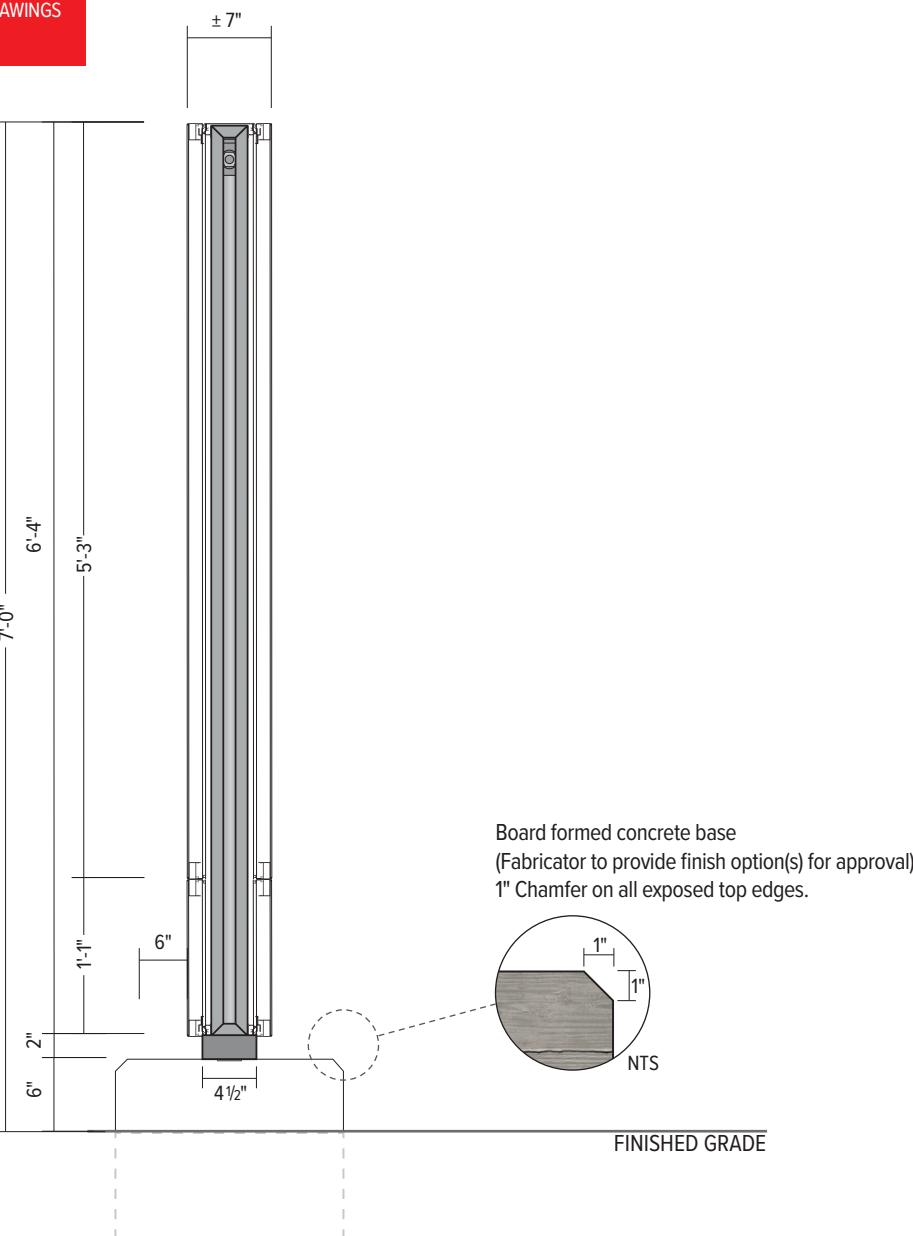
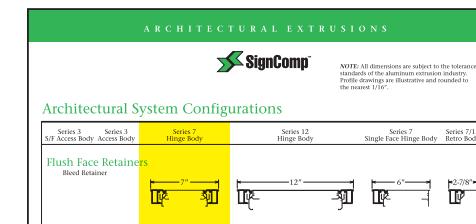
When Programming
 Pedestrian Directionals:
 Use Arrow sequence →, ←, ↑



Steel post support
(see engineering: SGN5.1 - SGN5.3)
Through bolt aluminum saddles to post

NOTE:

DRAWINGS FOR CONSTRUCTION INTENT ONLY.
DO NOT USE FOR FABRICATION. SIGNAGE CONTRACTOR
TO PROVIDE FINAL DRAWING DETAILS.
(FINAL DETAILS SHALL BE DEFERRED TO THE SHOPS DRAWINGS
BY CONTRACTOR)



Softscape conditions

NOTE:

CONCRETE FOUNDATION / ATTACHMENT
SEE ENGINEERING: SGN5.1 - SGN5.3
SEE ENGINEERING & CALCULATIONS SECTION 11.1

NOTE:

SIGN LOCATIONS TO BE COORDINATED WITH UNDERGROUND UTILITIES.
SIGN FABRICATOR IS RESPONSIBLE TO USE ERASABLE PAINT TO MARK
ALL LOCATIONS AND REFERENCE ALL UNDERGROUND UTILITIES PRIOR
TO DIGGING / INSTALLATION.

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein
constitute the original and unpublished work of
Shannon-Leigh Associates, LLC and may not be used
without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**

Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

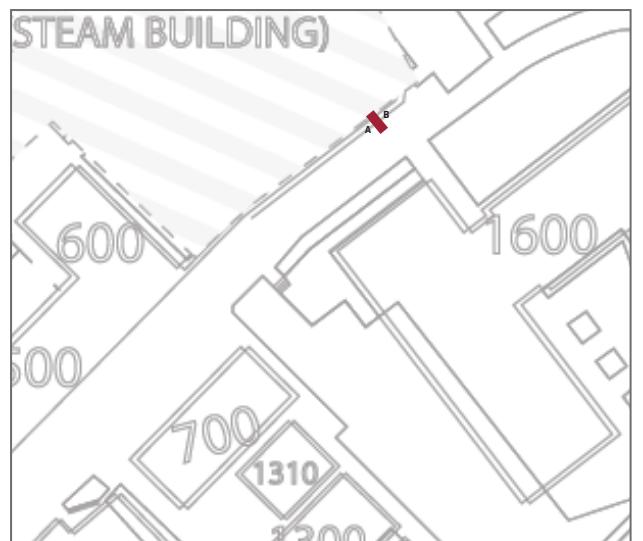
PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Fabrication Intent
EWF.10**

PAGE NUMBER:

6.36

General Note:
Reference Engineering Drawings & Calculations in Section 11


1 | Existing Conditions | Loc 139

Scale: NTS

1 | Rendering Example | Loc 139

Scale: NTS

2 | Plan View | Loc 139 (see dimensioned setback plans)

Scale: NTS

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:

**Exterior Wayfinding
Project**

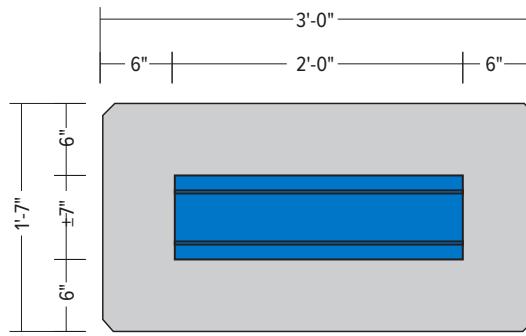
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:

MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:


100% Construction Intent
For Construction Intent Only

SHEET TITLE:

EWF.10
Photo Rendering

PAGE NUMBER:

6.38

KEY	
A	Item
P1	Color

A. Message Panels:
1/8" Aluminum Removable message panels.
Faces to be removable for future updates.
All exposed edges to be surface painted.
All hardware to be concealed, no exposed
seams or fasteners on sign faces.

B. Copy and graphics:
Surface applied contour cut reflective vinyl.
Typeface: Agenda Regular.

C. Pattern panel:
All exposed edges to be surface painted.
All hardware to be concealed, no exposed
seams or fasteners on sign faces.
Pattern to be surface painted using Gerber paint
mask or approved equal.

D. SignComp or approved equal:
Hinge body paired with flush face bleed body retainers.
All exposed edges and hardware to be surface
painted.

E. Alum square tube reveal, with mitered corner
fabrication. All exposed edges to be surface
painted.

F. Board formed concrete base.
(Fabricator to provide finish option(s) for approval).
1" Chamfer on all exposed top edges.

G. Footing / Attachment
(see engineering: SGN6.1 - SGN6.3)

Note: Entire sign including main sign body, all face
panels and copy to receive a UV, anti-graffiti coating.

Note: BID alternate price with the entire sign using
powdercoat finish vs. matthews paint.
(including the masked pattern)

GRAPHIC CONSULTANT:

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein
constitute the original and unpublished work of
Shannon-Leigh Associates, LLC and may not be used
without prior written consent. © 2026

CLIENT:

PROJECT ADDRESS:

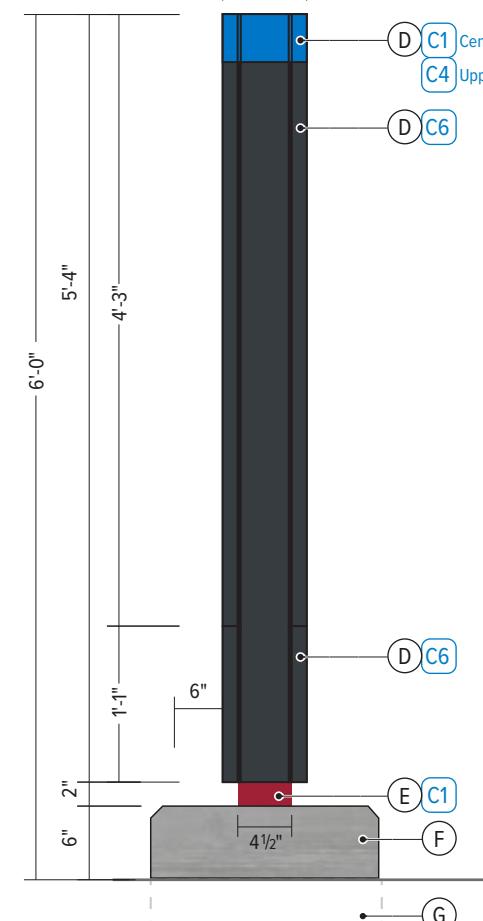
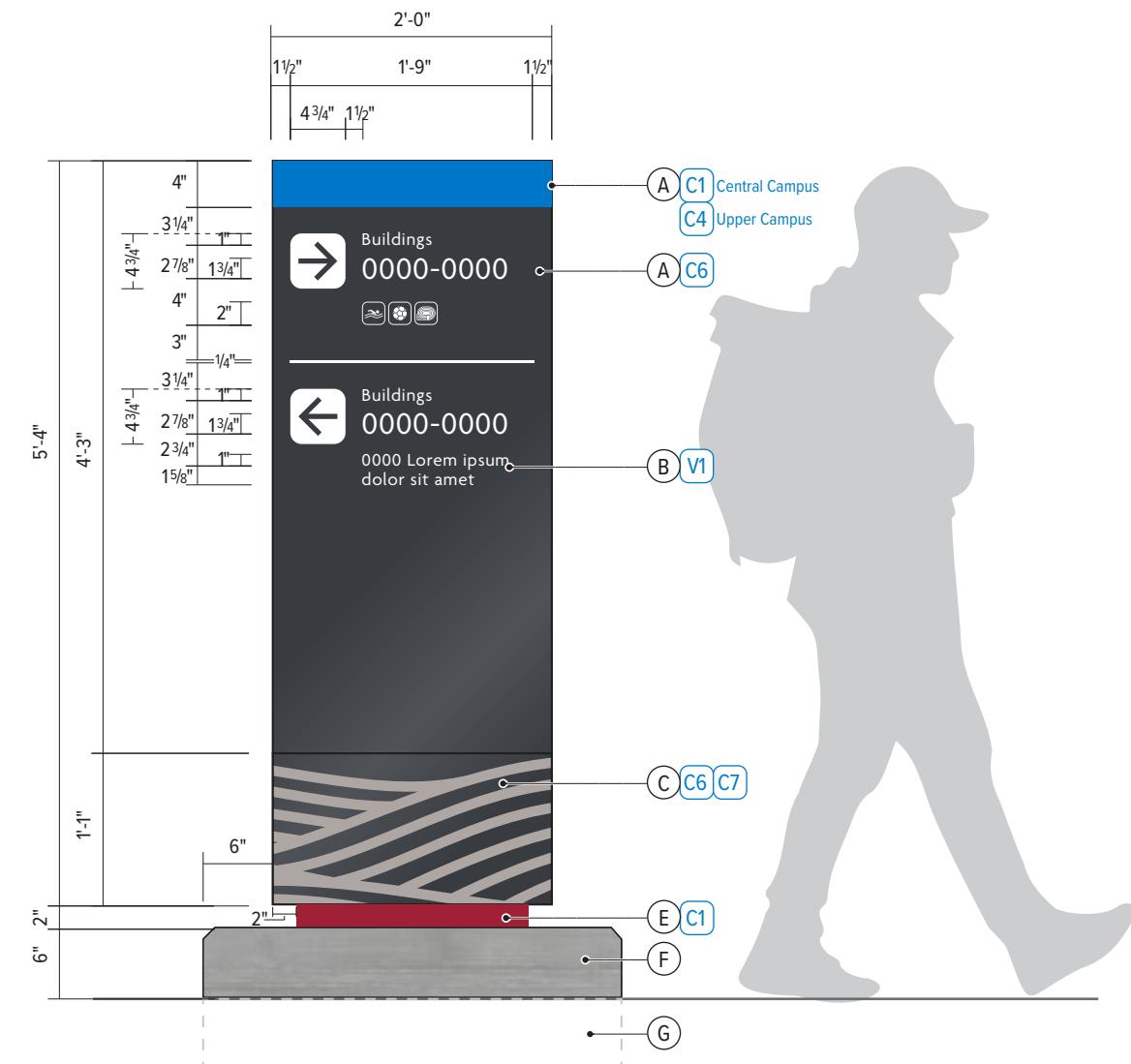
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

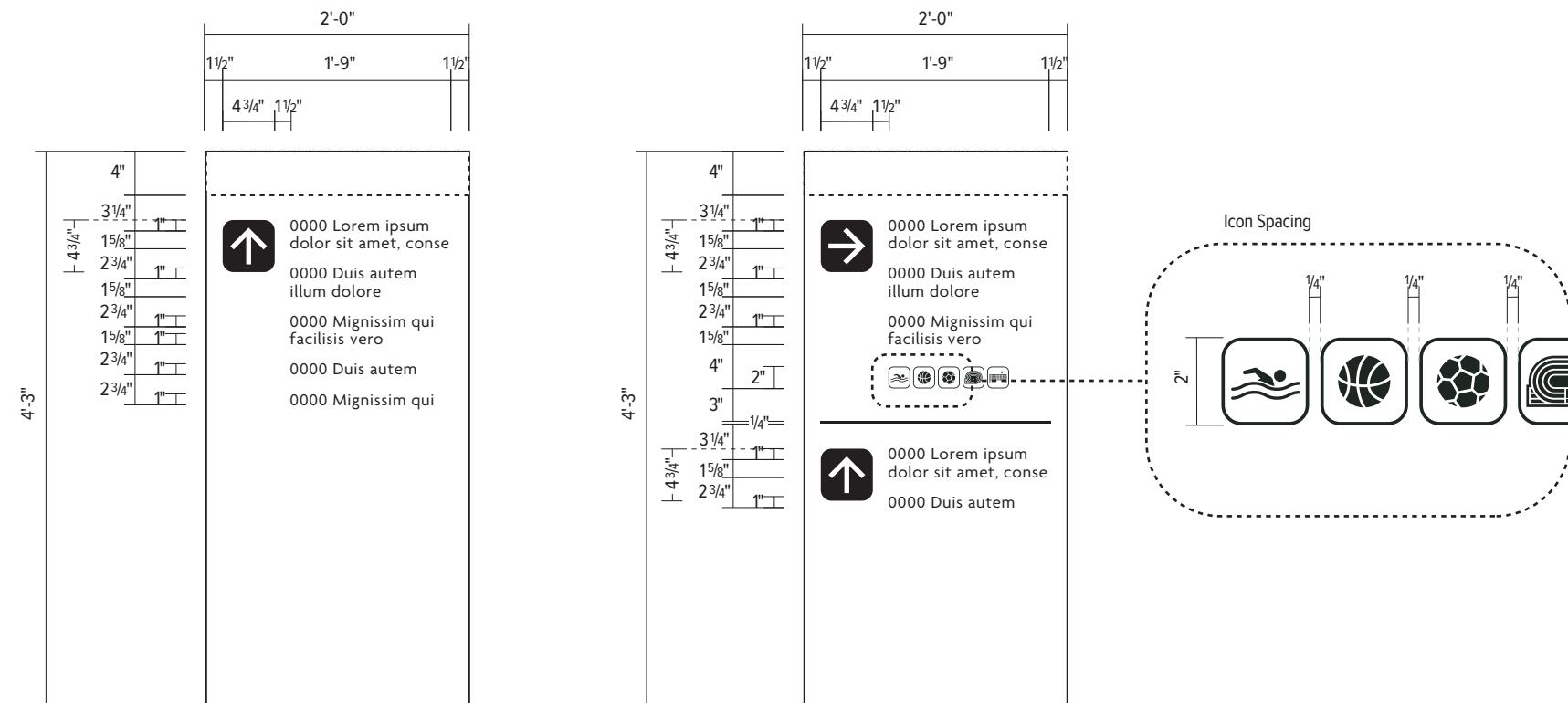
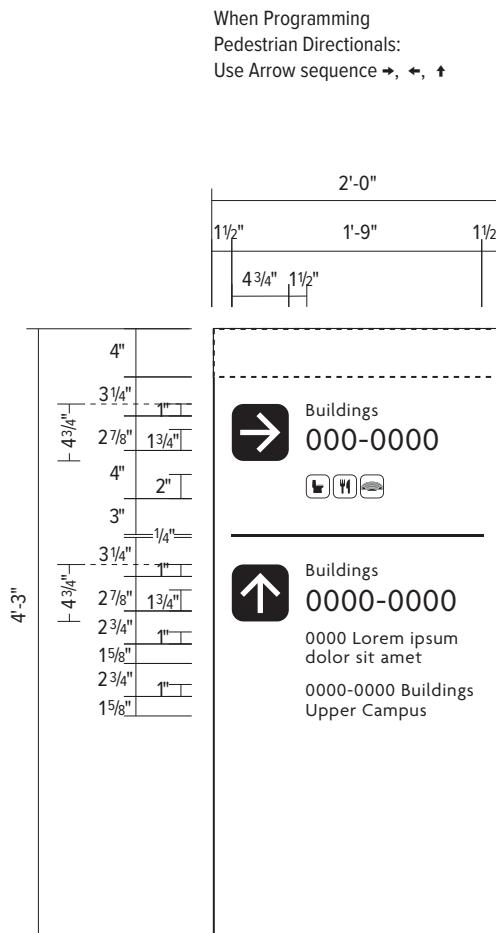
ARCHITECT:

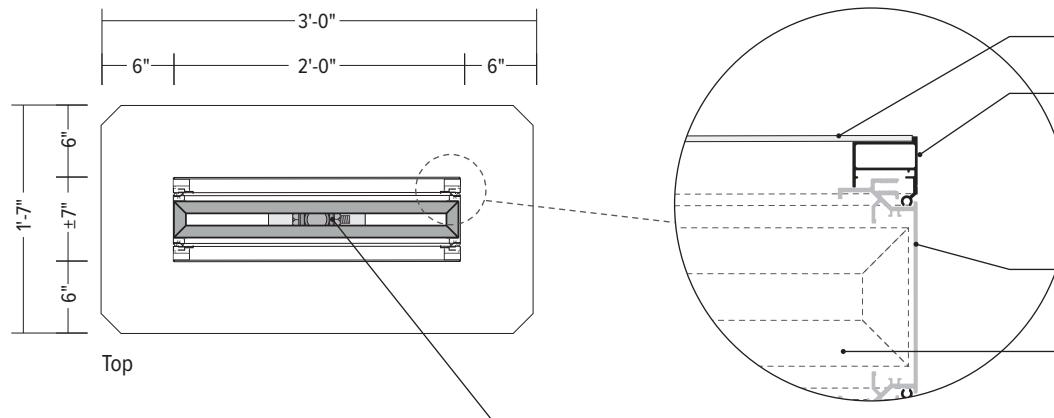
PROJECT NAME:
**Exterior Wayfinding
Project**

Job# 3738

CREATED BY / DATE:
MV / 2025_0217

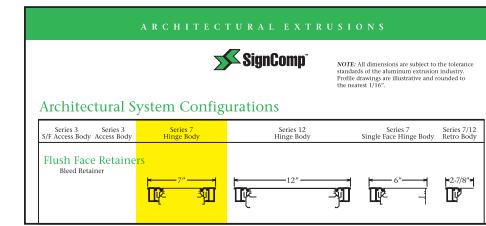


REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123



PROJECT PHASE:
100% Construction Intent
For Construction Intent Only


SHEET TITLE:
EWF.11
Secondary Pedestrian Directional
Double Sided

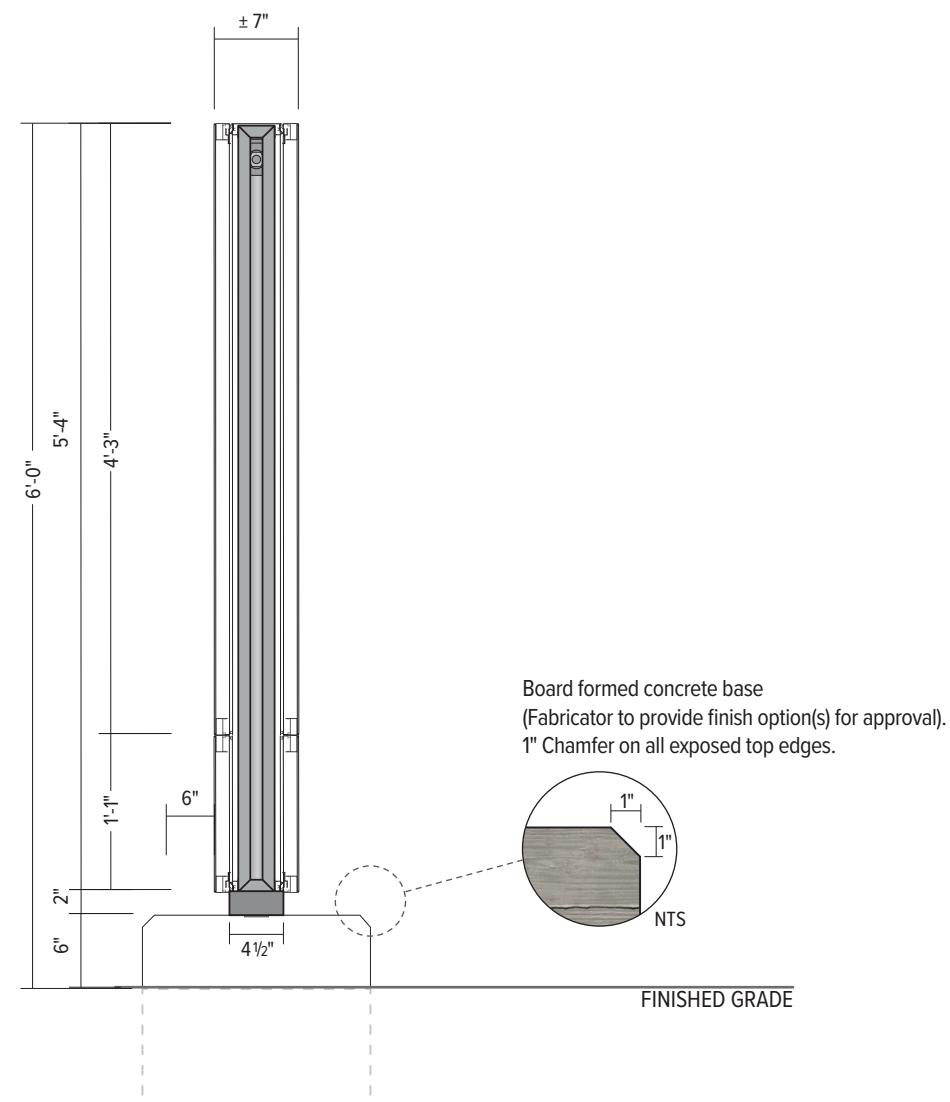
PAGE NUMBER:

6.39



Steel post support
(see engineering: SGN6.1 - SGN6.3)
Through bolt aluminum saddles to post

NOTE:
DRAWINGS FOR CONSTRUCTION INTENT ONLY.
DO NOT USE FOR FABRICATION. SIGNAGE CONTRACTOR
TO PROVIDE FINAL DRAWING DETAILS.
(FINAL DETAILS SHALL BE DEFERRED TO THE SHOPS DRAWINGS
BY CONTRACTOR)


NOTE:

SIGN LOCATIONS TO BE COORDINATED WITH UNDERGROUND UTILITIES.
SIGN FABRICATOR IS RESPONSIBLE TO USE ERASABLE PAINT TO MARK
ALL LOCATIONS AND REFERENCE ALL UNDERGROUND UTILITIES PRIOR
TO DIGGING / INSTALLATION.

NOTE:

CONCRETE FOUNDATION / ATTACHMENT
SEE ENGINEERING: SGN6.1 - SGN6.3
SEE ENGINEERING & CALCULATIONS SECTION 11.1

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein
constitute the original and unpublished work of
Shannon-Leigh Associates, LLC and may not be used
without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

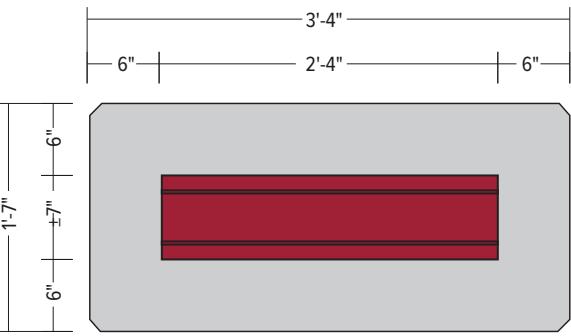
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123


PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
Fabrication Intent
EWF.11

PAGE NUMBER:

6.41

General Note:
Reference Engineering Drawings & Calculations in Section 11

KEY	
A	Item
P1	Color

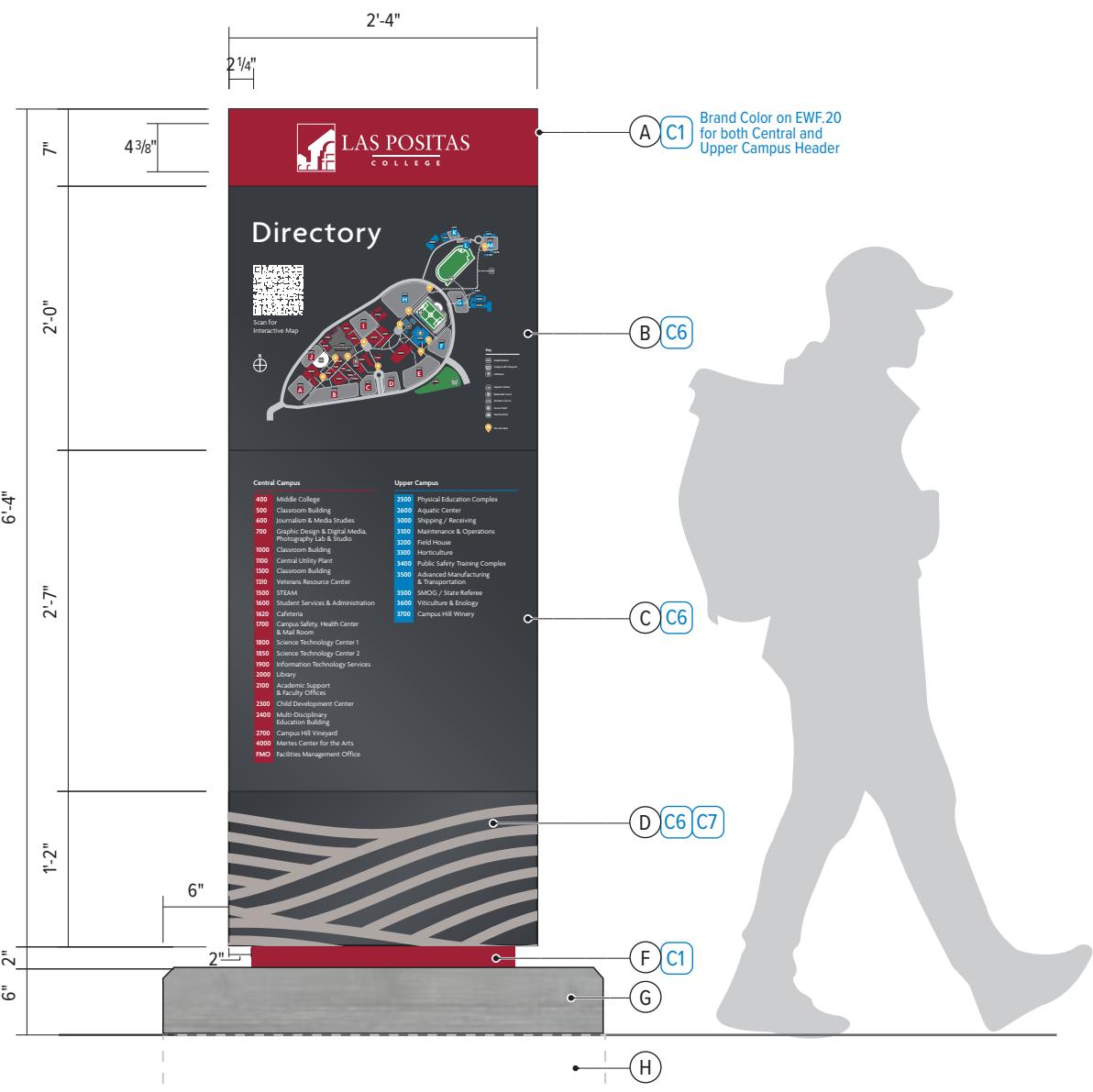
A. Brand / Logo Panel:
1/8" Aluminum Removable message panels.
Logo to be direct digitally printed.
Faces to be removable for future updates.
All exposed edges to be surface painted.
All hardware to be concealed, no exposed seams or fasteners on sign faces.

B. Map Panel:
1/8" Aluminum Removable message panels.
Map and all copy to be direct digitally printed to match project colors.
Faces to be removable for future updates.
All exposed edges to be surface painted.
All hardware to be concealed, no exposed seams or fasteners on sign faces.

C. Directory Message Panel:
1/8" Aluminum Removable message panels.
All Graphics and copy to be direct digitally printed to match project colors.
Faces to be removable for future updates.
All exposed edges to be surface painted.
All hardware to be concealed, no exposed seams or fasteners on sign faces.

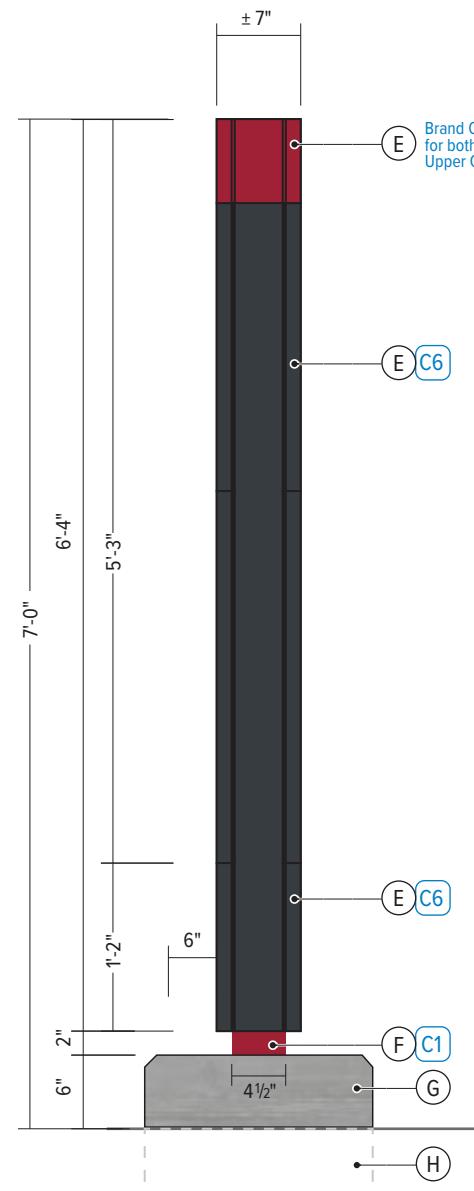
D. Pattern panel:
All exposed edges to be surface painted.
All hardware to be concealed, no exposed seams or fasteners on sign faces.
Pattern to be surface painted using Gerber paint mask or approved equal.

E. SignComp or approved equal:
Hinge body paired with flush face bleed body retainers.
All exposed edges and hardware to be surface painted.


F. Alum square tube reveal, with mitered corner fabrication. All exposed edges to be surface painted.

G. Board formed concrete base.
(Fabricator to provide finish option(s) for approval).
1" Chamfer on all exposed top edges.

H. Footing / Attachement
(see engineering: SGN4.1 - SGN4.3)


Note: Entire sign including main sign body, all face panels and copy to receive a UV, anti-graffiti coating.

Note: BID alternate price with the entire sign using powdercoat finish vs. matthews paint.
(including the masked pattern)

1 Elevation

Scale: 3/4" = 1'-0"

2 Side View

Scale: 3/4" = 1'-0"

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
Exterior Wayfinding Project
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:

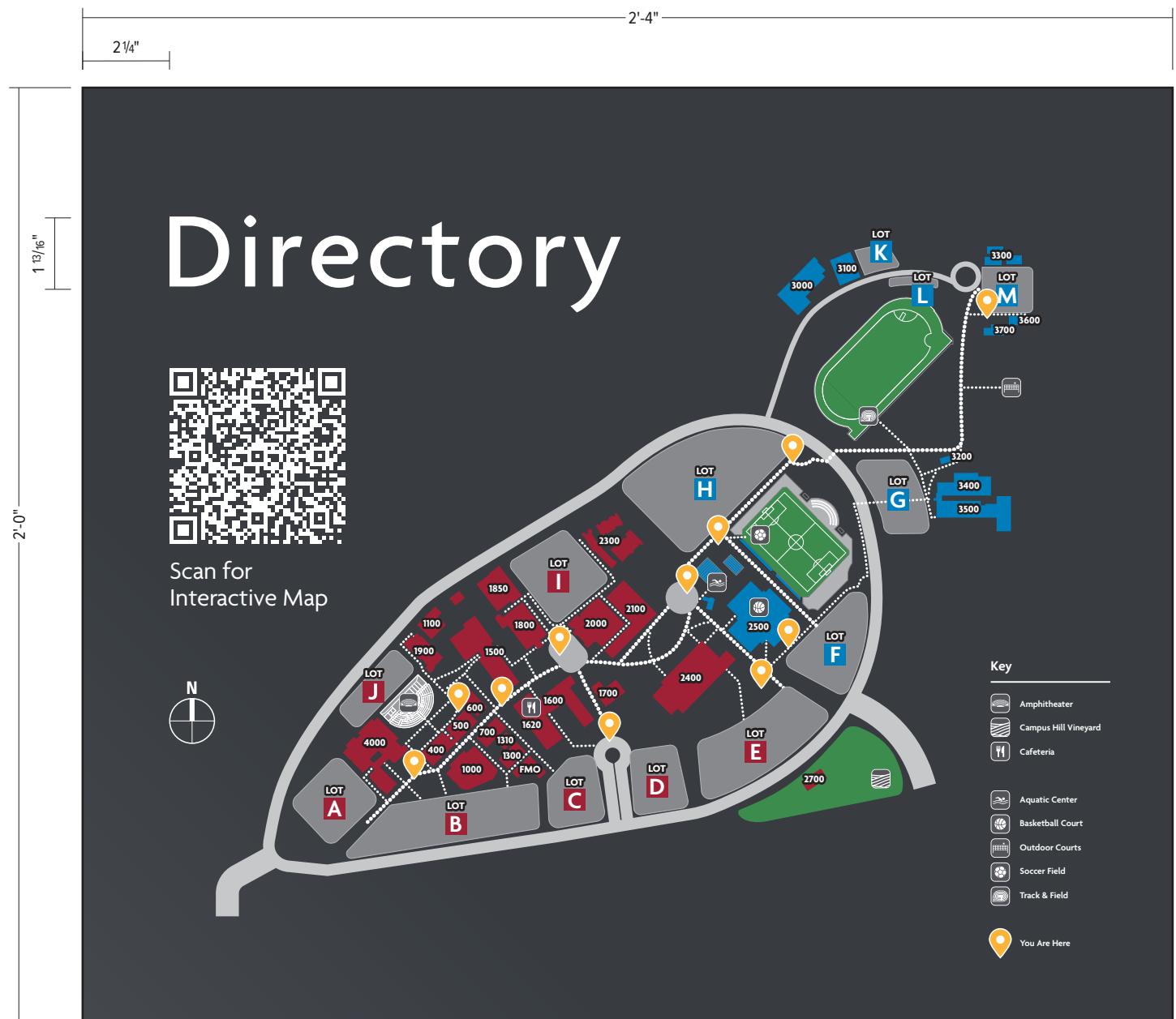
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

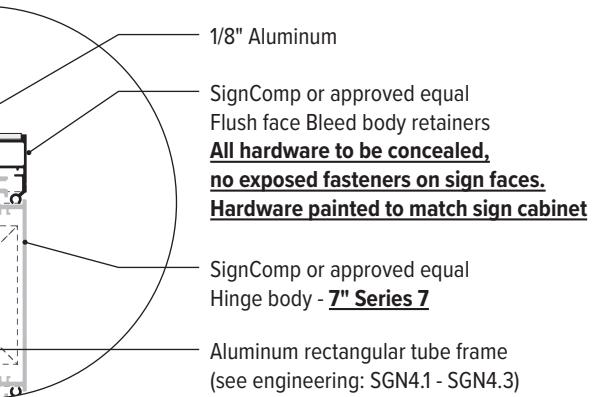
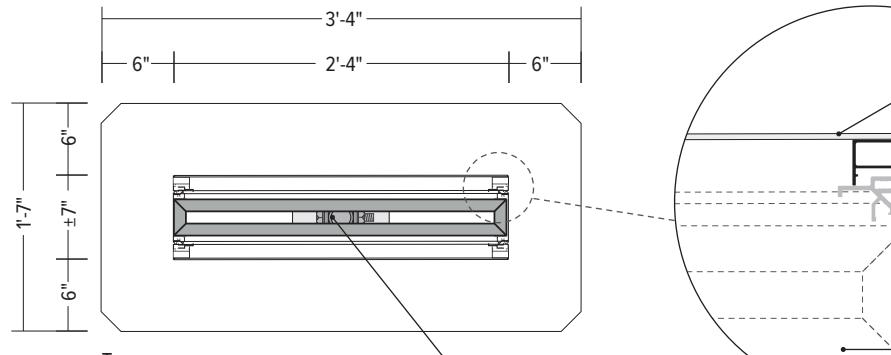
PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
EWF.20
Orientation Directory Map
Double Sided

PAGE NUMBER:

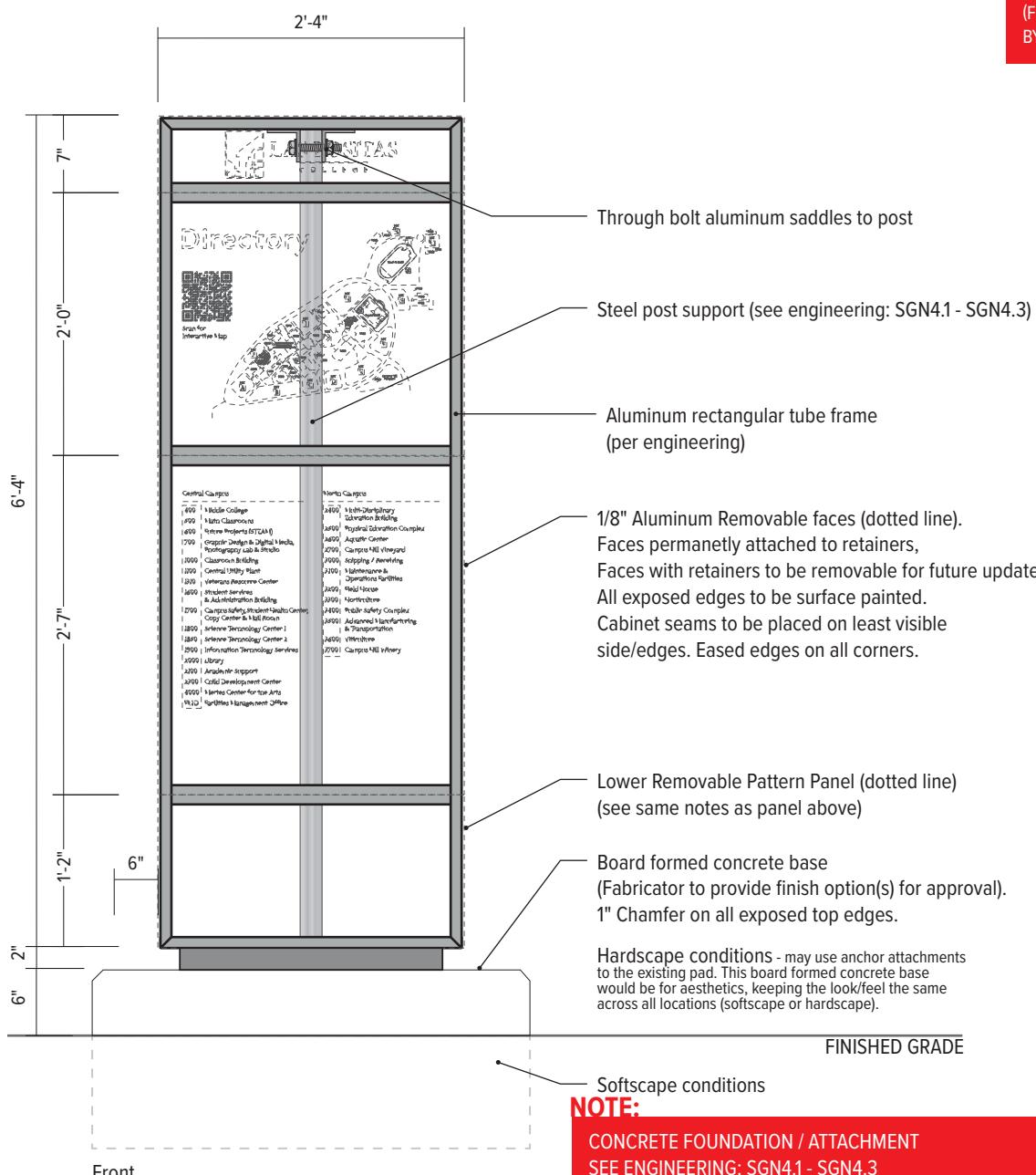
6.43


Phase 1 with temp vinyl (const. zone)



Map Detail

Scale: 3" = 1'-0"

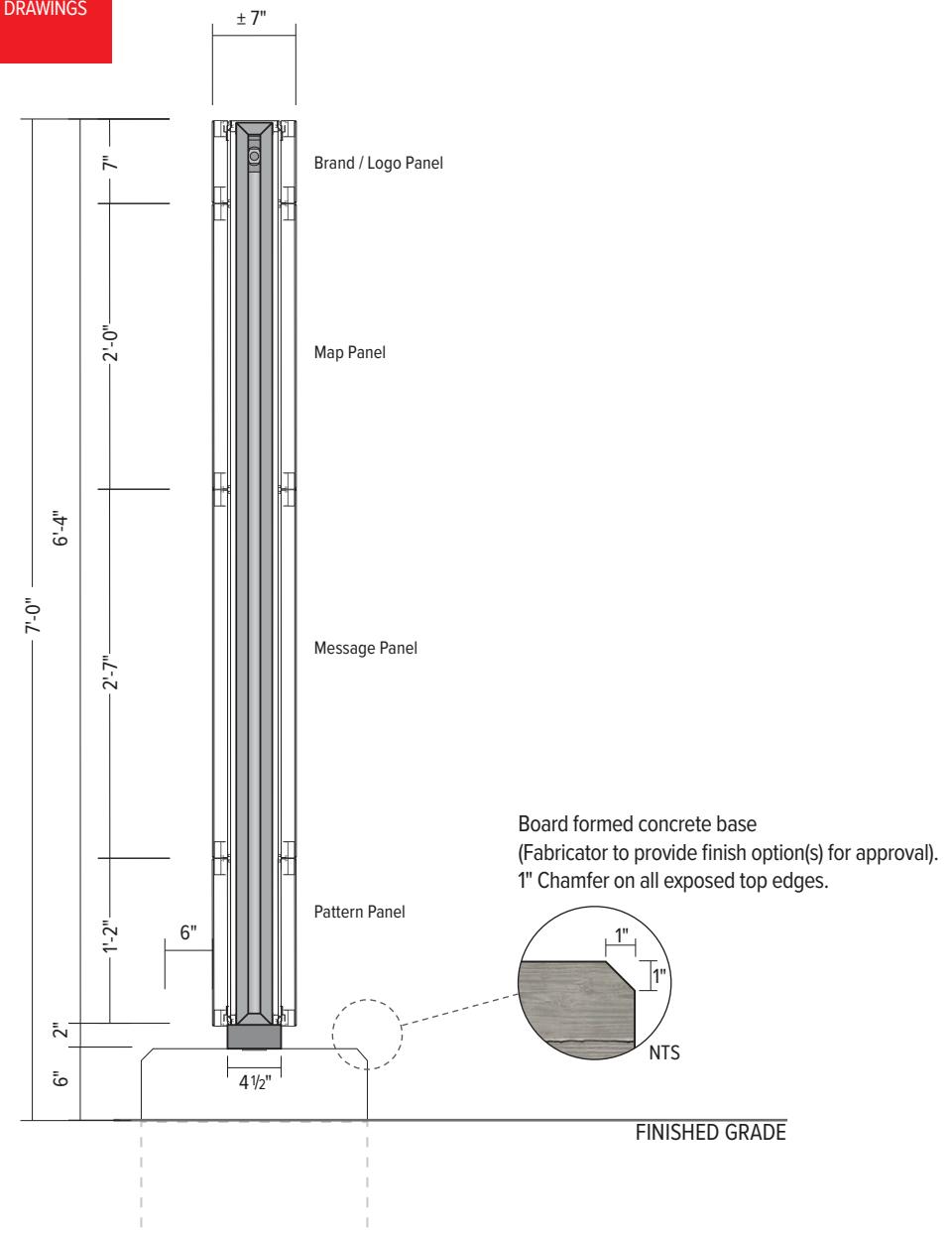
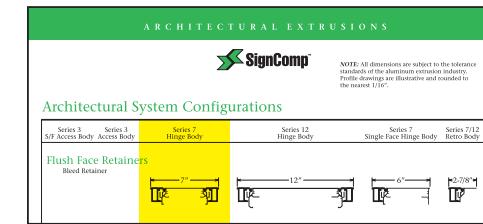
Phase 2 - new building 1500 and path (removed temp vinyl)



Central Campus		Upper Campus	
400	Middle College	2500	Physical Education Complex
500	Classroom Building	2600	Aquatic Center
600	Journalism & Media Studies	3000	Shipping / Receiving
700	Graphic Design & Digital Media, Photography Lab & Studio	3100	Maintenance & Operations
1000	Classroom Building	3200	Field House
1100	Central Utility Plant	3300	Horticulture
1300	Classroom Building	3400	Public Safety Training Complex
1310	Veterans Resource Center	3500	Advanced Manufacturing & Transportation
1500	STEAM	3500	SMOG / State Referee
1600	Student Services & Administration	3600	Viticulture & Enology
1620	Cafeteria	3700	Campus Hill Winery
1700	Campus Safety, Health Center & Mail Room		
1800	Science Technology Center 1		
1850	Science Technology Center 2		
1900	Information Technology Services		
2000	Library		
2100	Academic Support & Faculty Offices		
2300	Child Development Center		
2400	Multi-Disciplinary Education Building		
2700	Campus Hill Vineyard		
4000	Mertes Center for the Arts		
FMO	Facilities Management Office		

NOTE:

DRAWINGS FOR CONSTRUCTION INTENT ONLY.
DO NOT USE FOR FABRICATION. SIGNAGE CONTRACTOR
TO PROVIDE FINAL DRAWING DETAILS.
(FINAL DETAILS SHALL BE DEFERRED TO THE SHOPS DRAWINGS
BY CONTRACTOR)

NOTE:

CONCRETE FOUNDATION / ATTACHMENT
SEE ENGINEERING: SGN4.1 - SGN4.3
SEE ENGINEERING & CALCULATIONS SECTION 11.1

NOTE:

SIGN LOCATIONS TO BE COORDINATED WITH UNDERGROUND UTILITIES.
SIGN FABRICATOR IS RESPONSIBLE TO USE ERASABLE PAINT TO MARK
ALL LOCATIONS AND REFERENCE ALL UNDERGROUND UTILITIES PRIOR
TO DIGGING / INSTALLATION.

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein
constitute the original and unpublished work of
Shannon-Leigh Associates, LLC and may not be used
without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

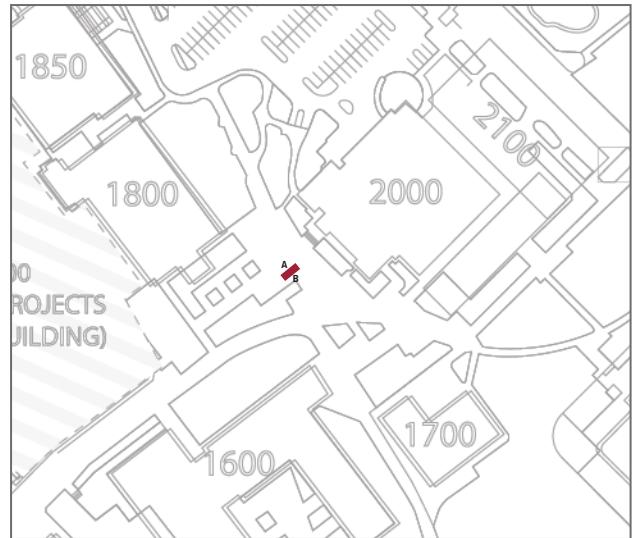
CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Fabrication Intent
EWF.20**

PAGE NUMBER:


6.47

General Note:
Reference Engineering Drawings & Calculations in Section 11

2 Existing Conditions | Loc 151

Scale: NTS

3 Plan View | Loc 151 (see dimensioned setback plans)

Scale: NTS

1 Rendering Example | Loc 151

Scale: NTS

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

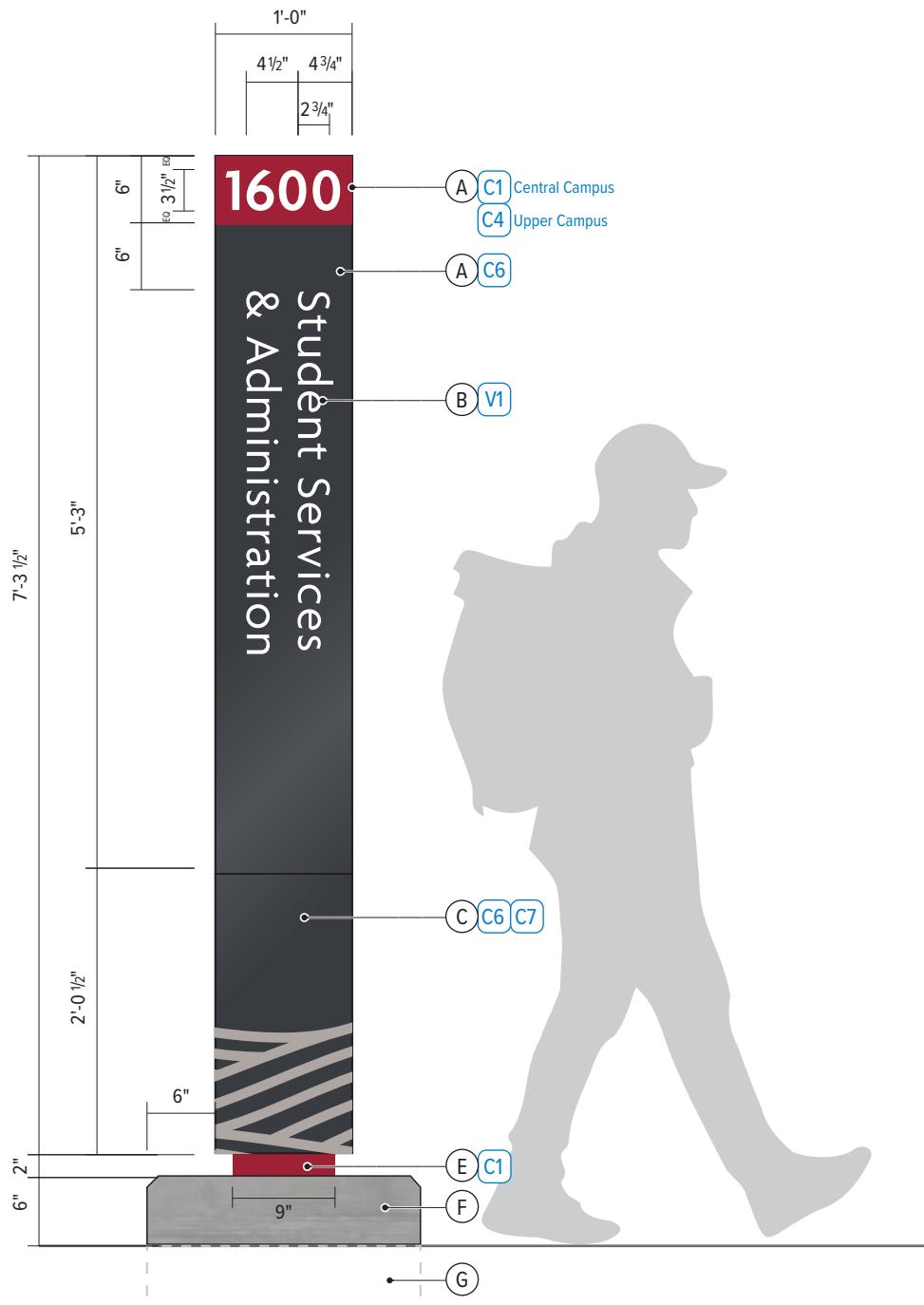
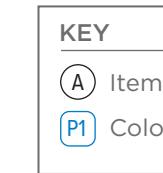
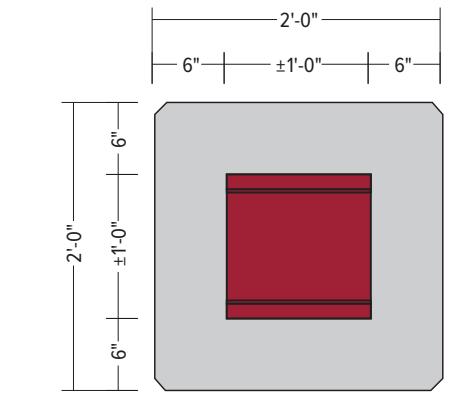
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**

Job# 3738

CREATED BY / DATE:
MV / 2025_0217

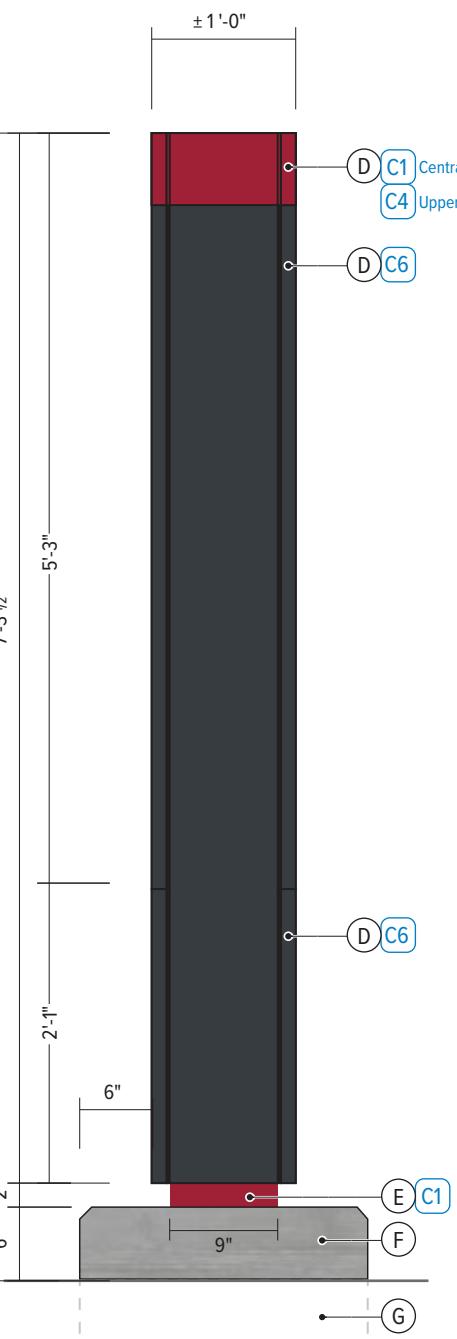



REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
EWF.20
Photo Rendering

PAGE NUMBER:

6.49


2 Side View

Scale: 3/4" = 1'-0"

- A. Message Panels:
1/8" Aluminum Removable message panels.
Faces to be removable for future updates.
All exposed edges to be surface painted.
All hardware to be concealed, no exposed
seams or fasteners on sign faces.
- B. Copy and graphics:
Surface applied contour cut reflective vinyl.
Typeface: Agenda Semibold and Medium.
- C. Pattern panel:
All exposed edges to be surface painted.
All hardware to be concealed, no exposed
seams or fasteners on sign faces.
Pattern to be surface painted using Gerber paint
mask or approved equal.
- D. SignComp or approved equal:
Hinge body paired with flush face bleed body retainers.
All exposed edges and hardware to be surface
painted.
- E. Alum square tube reveal, with mitered corner
fabrication. All exposed edges to be surface
painted.
- F. Board formed concrete base.
(Fabricator to provide finish option(s) for approval).
1" Chamfer on all exposed top edges.
- G. Footing / Attachment
(see engineering: SGN7.1 - SGN7.3)

Note: Entire sign including main sign body, all face
panels and copy to receive a UV, anti-graffiti coating.

Note: BID alternate price with the entire sign using
powdercoat finish vs. matthews paint.
(including the masked pattern)

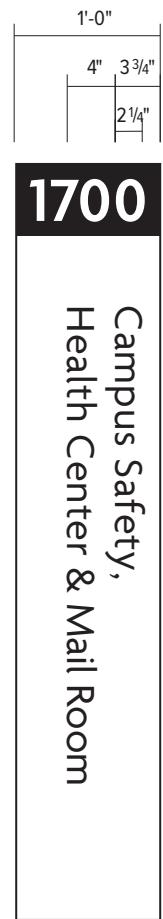
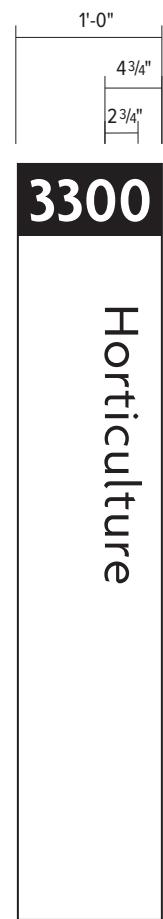
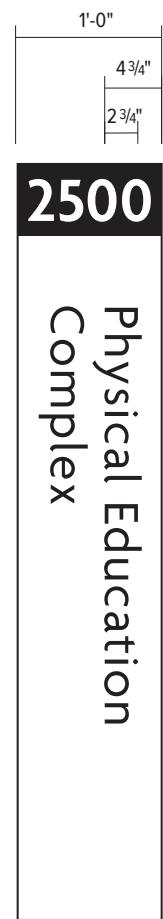
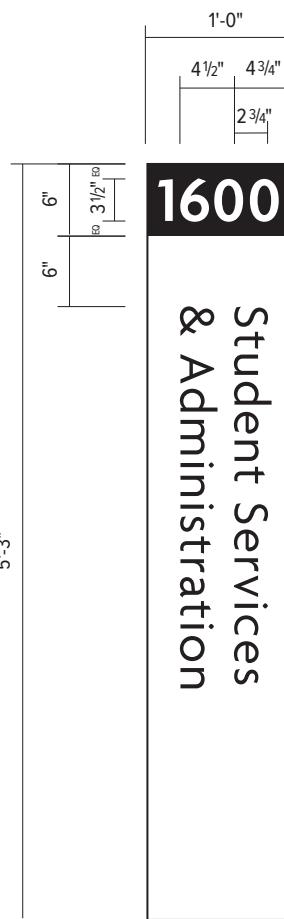
GRAPHIC CONSULTANT:
SHANNON LEIGH
STRATEGIC PLACEMAKING
1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein
constitute the original and unpublished work of
Shannon-Leigh Associates, LLC and may not be used
without prior written consent. © 2026

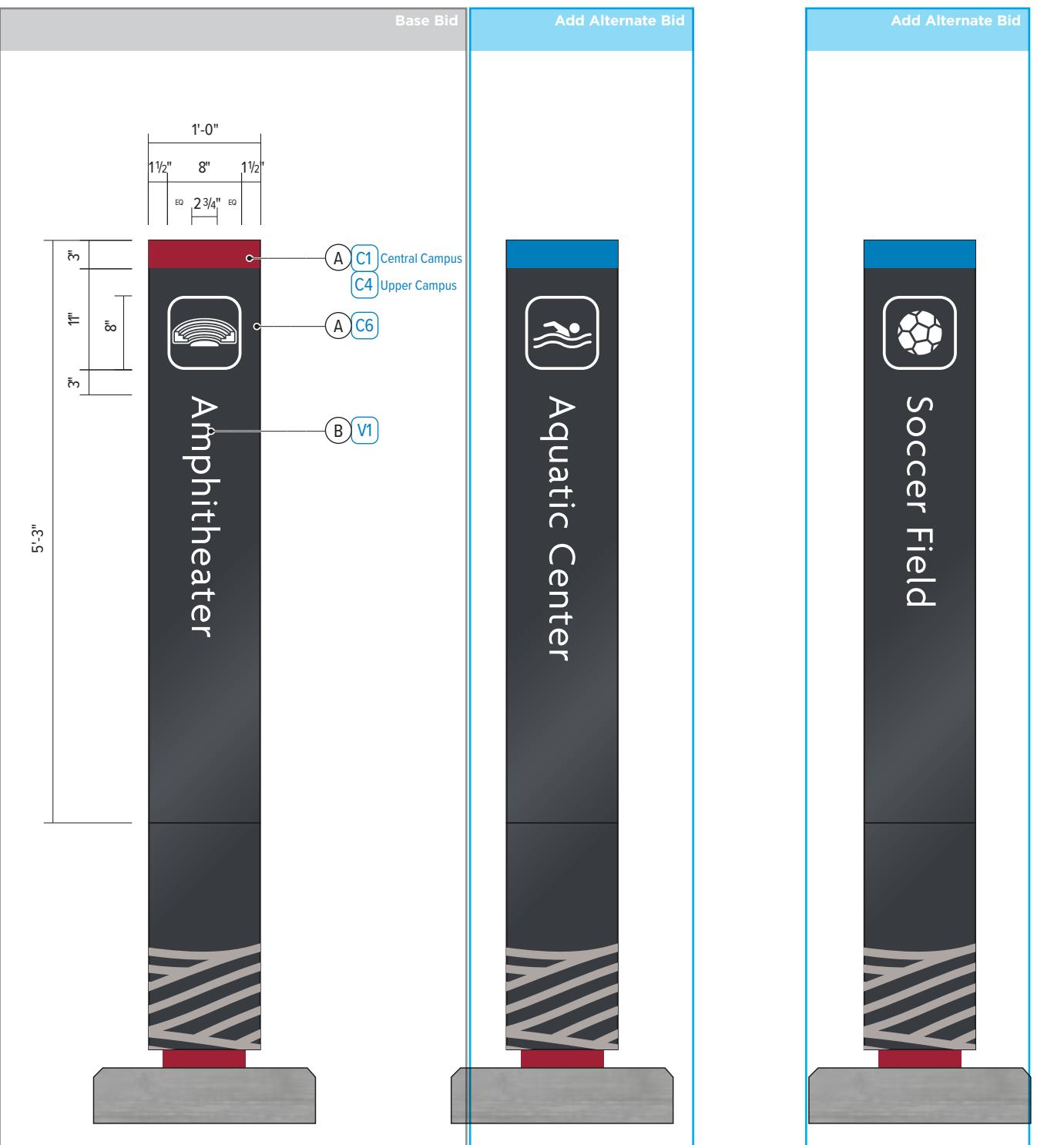
CLIENT:
LAS POSITAS
COLLEGE

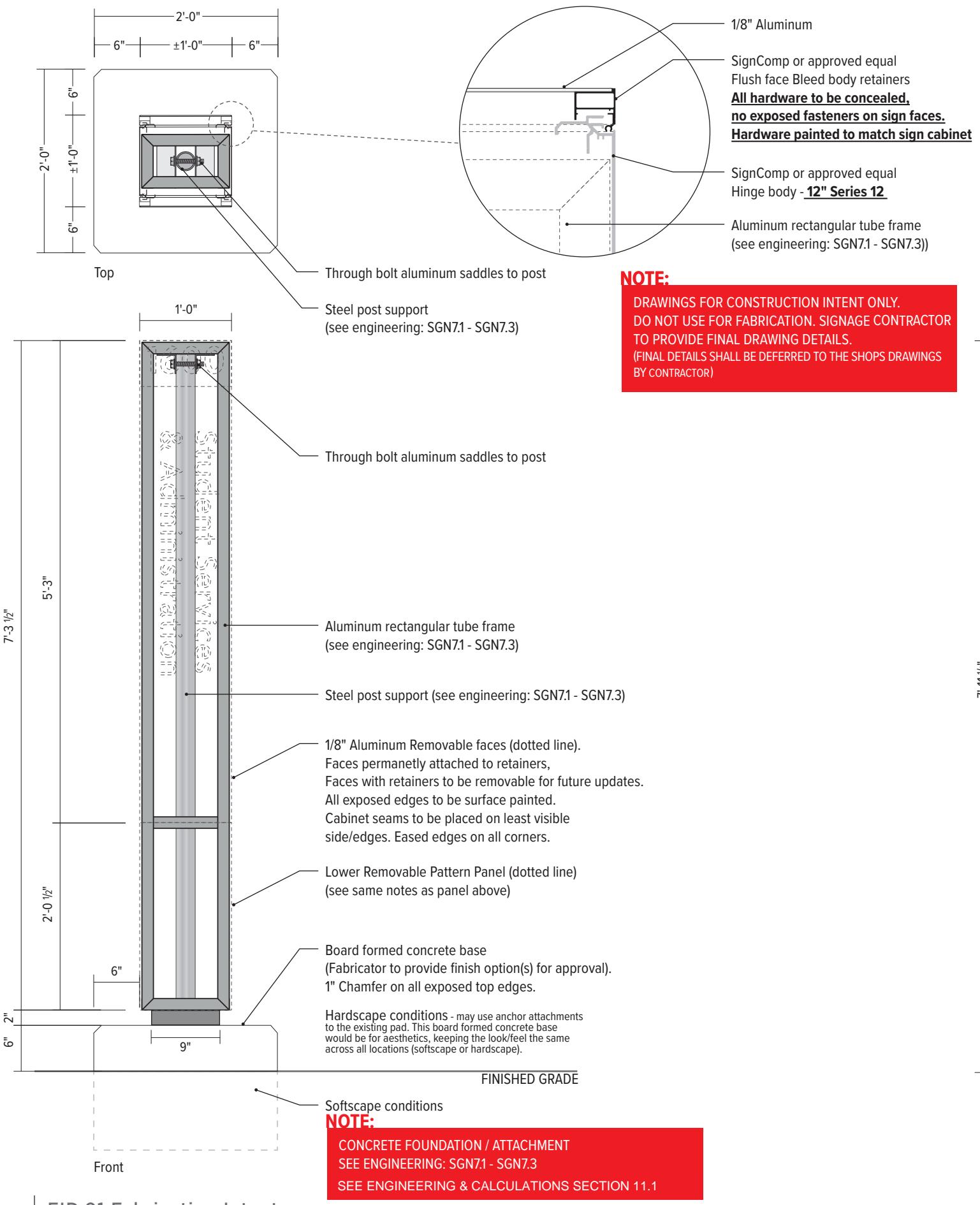
PROJECT ADDRESS:
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

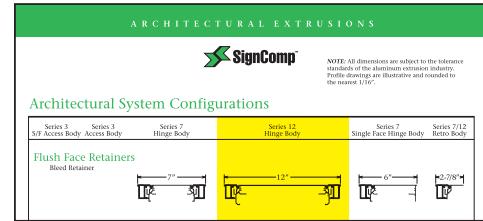
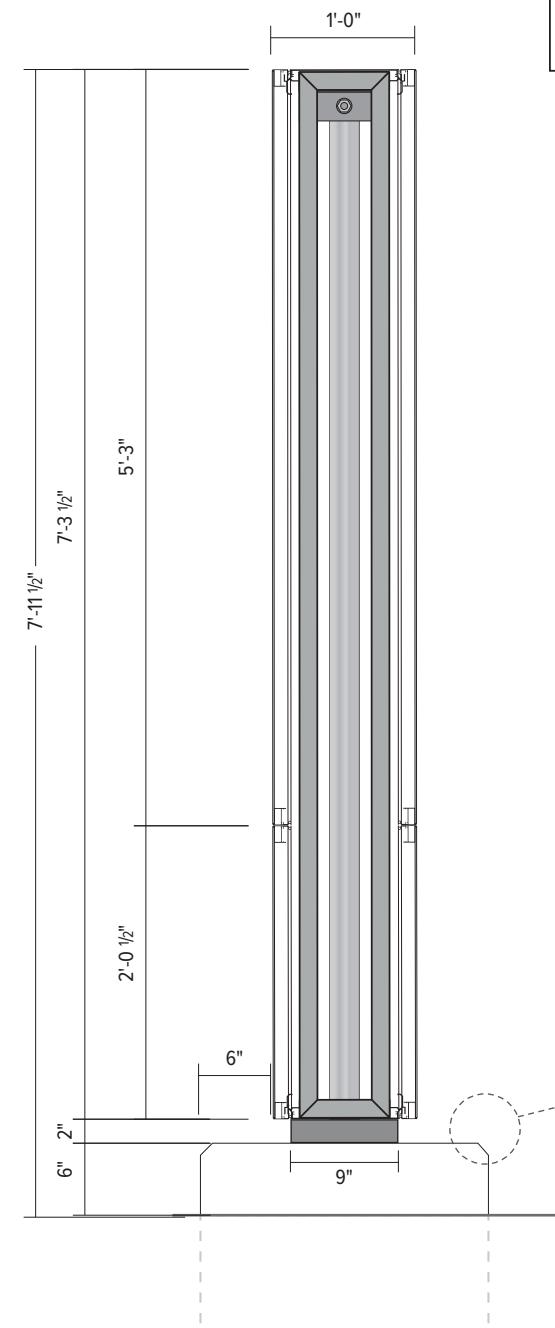




PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

CREATED BY / DATE:
MV / 2025_0217


REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123


PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
EID.01
Building ID - Freestanding
Double Sided



2 1/4" Copy if needed to fit

NOTE:

SIGN LOCATIONS TO BE COORDINATED WITH UNDERGROUND UTILITIES.
SIGN FABRICATOR IS RESPONSIBLE TO USE ERASABLE PAINT TO MARK
ALL LOCATIONS AND REFERENCE ALL UNDERGROUND UTILITIES PRIOR
TO DIGGING / INSTALLATION.

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein
constitute the original and unpublished work of
Shannon-Leigh Associates, LLC and may not be used
without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**
Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
**Fabrication Intent
EID.01**

PAGE NUMBER:

6.53

General Note:
Reference Engineering Drawings & Calculations in Section 11

2 Existing Conditions | Loc 141

Scale: NTS

3 Plan View | Loc 141 (see dimensioned setback plans)

Scale: NTS

1 Rendering Example | Loc 141

Scale: NTS

GRAPHIC CONSULTANT:

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

All drawings and written material appearing herein constitute the original and unpublished work of Shannon-Leigh Associates, LLC and may not be used without prior written consent. © 2026

CLIENT:

LAS POSITAS
COLLEGE

PROJECT ADDRESS:

Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

ARCHITECT:

PROJECT NAME:
**Exterior Wayfinding
Project**

Job# 3738

CREATED BY / DATE:
MV / 2025_0217

REVISIONS BY / DATE / NOTES:
MV 2025_0313
MV 2025_0530
MV 2025_0822
MV 2025_1003
MV 2025_1125
MV 2025_1211
MV 2025_0123

PROJECT PHASE:
100% Construction Intent
For Construction Intent Only

SHEET TITLE:
EID.01
Photo Rendering

PAGE NUMBER:

6.55

TYPE	NEW	REPLACE	RETROFIT	RELOCATE	REMOVE ONLY	NO ACTION	TBD	TOTAL
Brand ID								
BR.02 - Secondary Brand ID	1	-	-	-	-	-	-	1
Identification								
PID.01 - Parking Lot ID	13	-	-	-	-	-	-	13
Wayfinding								
EWF.01A - Vehicular Directional at Main Entry Point	2	-	-	-	-	-	-	2
EWF.01 - Primary Vehicular Directional	12	-	-	-	-	-	-	12
EWF.02 - Secondary Vehicular Directional	1	-	-	-	-	-	-	1
Total								29

TYPE	NEW	REPLACE	RETROFIT	RELOCATE	REMOVE ONLY	NO ACTION	TBD	TOTAL
Add Alternate Bid								
(Alt)PID.01 - Bid Alternate - Parking Lot ID	3	-	-	-	-	-	-	3
(Alt)EWF.01 - Bid Alternate - Primary Vehicular Directional	1	-	-	-	-	-	-	1
(Alt)EWF.02 - Bid Alternate - Secondary Vehicular Directional	1	-	-	-	-	-	-	1
Total								5

Reference Specification Section 01 23 00 for further information for Alternate Bid items

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Vehicular WF Programming	Vehicular WF Plan	EWF.01A - Vehicular Directional at Main Entry Point	02	1	New	<p>MESSAGE A [↑ CENTRAL CAMPUS] Drop Off</p> <p>Student Services & Administration</p> <p>Mertes Center for the Arts</p> <p>[← UPPER CAMPUS] Athletics Facilities</p> <p>Child Development Center</p> <p>Shipping / Receiving</p> <p>MESSAGE B → Athletics Facilities</p> <p>Child Development Center</p> <p>Shipping / Receiving</p> <p>↑ Exit Collier Canyon Road</p> <p>Thank You for Visiting</p> <p>GENERAL NOTES</p>

Add Alternate Bid

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Vehicular WF Programming	Vehicular WF Plan	EWF.02 - Secondary Vehicular Directional	03	1	New	<p>MESSAGE A ↑ Drop Off</p> <p>↔ [P] Mertes Center for the Arts Parking A & B</p> <p>MESSAGE B → [P] Central Campus Parking I & J</p> <p>Upper Campus</p> <p>GENERAL NOTES</p>
	Vehicular WF Programming	Vehicular WF Plan	EWF.02 - Secondary Vehicular Directional	04	1	New
	Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	04.1	1	New

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	04.2	1	New	<p>MESSAGE A B PARKING [EV icon]</p> <p>MESSAGE B B PARKING [EV icon]</p> <p>GENERAL NOTES Confirm future landscaping conditions will allow for a sign at this location.</p>
Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	10	1	New	<p>MESSAGE A B PARKING [EV icon]</p> <p>MESSAGE B B PARKING [EV icon]</p>
Vehicular WF Programming	Vehicular WF Plan	EWF.01 - Primary Vehicular Directional	11	1	New	<p>MESSAGE A ↔ [P] Drop Off Student Services & Administration Parking B - D ↑ [P] Athletics Facilities Upper Campus MESSAGE B ↑ [P] Mertes Center for the Arts Parking A - C Exit Collier Canyon Rd GENERAL NOTES</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	11.1	1	New	<p>MESSAGE A C PARKING</p> <p>MESSAGE B C PARKING</p>
Vehicular WF Programming	Vehicular WF Plan	BR.02 - Secondary Brand ID	13	1	New	<p>GENERAL NOTES</p>
Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	13.1	1	New	<p>MESSAGE A D PARKING</p> <p>MESSAGE B D PARKING</p>
Vehicular WF Programming	Vehicular WF Plan	EWF.01 - Primary Vehicular Directional	14	1	New	<p>MESSAGE A ↑ [P] Athletics Facilities Upper Campus</p> <p>MESSAGE B → [P] Drop Off</p> <p>Student Services & Administration Parking B - D</p> <p>↑ [P] Mertes Center for the Arts Parking A - C</p> <p>GENERAL NOTES</p> <p>INSTALL NOTES 05.23.25: Install where the landscaping widens from the bike path ~ 8ft or more. May need to clear some landscaping to make both sides visible.</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Vehicular WF Programming	Vehicular WF Plan	EWF.01 - Primary Vehicular Directional	15	1	New	<p>MESSAGE A ↑ [P] Athletics Facilities</p> <p>SMOG / State Referee</p> <p>Shipping / Receiving</p> <p>Upper Campus</p> <p>→ Exit Campus Hill Drive</p> <p>MESSAGE B ↑ [P] Drop Off</p> <p>Central Campus Parking A - E</p> <p>Student Services & Administration</p> <p>Mertes Center for the Arts</p> <p>GENERAL NOTES</p>
	Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	15.1	1	New
	Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	15.2	1	New

Add Alternate Bid

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
	Vehicular WF Programming	Vehicular WF Plan	EWF.01 - Primary Vehicular Directional	15.4	1	<p>MESSAGE A ← Buildings 400-2400 4000 Mertes Center for the Arts → Buildings 2500 - 3700</p> <p>MESSAGE B [Blank]</p> <p>GENERAL NOTES 09.16.25: One-off sign; this style of addressing wasn't intended for vehicular signage.</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Vehicular WF Programming	Vehicular WF Plan	EWF.01A - Vehicular Directional at Main Entry Point	17	1	New	<p>MESSAGE A [← CENTRAL CAMPUS] Drop Off</p> <p>Mertes Center for the Arts</p> <p>[→ UPPER CAMPUS] Athletics Facilities</p> <p>Public Safety Training Center</p> <p>SMOG / State Referee</p> <p>Shipping / Receiving</p> <p>MESSAGE B ↑ Exit Campus Hill Drive</p> <p>Thank You for Visiting</p> <p>GENERAL NOTES</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Vehicular WF Programming	Vehicular WF Plan	EWF.01 - Primary Vehicular Directional	18	1	New	<p>MESSAGE A ← [P] Athletics Facilities Parking F</p> <p>↑ [P] Athletics Facilities Parking H</p> <p>Public Safety Training Center</p> <p>SMOG / State Referee</p> <p>MESSAGE B ↑ [P] Drop Off</p> <p>Central Campus Parking A - E</p> <p>← Exit Campus Hill Drive</p> <p>GENERAL NOTES</p>
Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	18.1	1	New	<p>MESSAGE A F PARKING</p> <p>MESSAGE B F PARKING</p>
Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	18.2	1	New	<p>MESSAGE A F PARKING</p> <p>MESSAGE B F PARKING</p>

Add Alternate Bid

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Vehicular WF Programming	Vehicular WF Plan	EWF.01 - Primary Vehicular Directional	20	1	New	<p>MESSAGE A → [P] Auto & Welding Technology</p> <p>Public Safety Training Center</p> <p>SMOG / State Referee</p> <p>↑ [P] Athletics Facilities Parking H</p> <p>MESSAGE B ← [P] Auto & Welding Technology</p> <p>Public Safety Training Center</p> <p>SMOG / State Referee</p> <p>↑ [P] Athletics Facilities Parking F</p> <p>GENERAL NOTES</p>
Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	20.1	1	New	<p>MESSAGE A G PARKING</p> <p>MESSAGE B G PARKING</p> <p>GENERAL NOTES 11.25.25: EV parking is planed for the future (currently no EV)</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Vehicular WF Programming	Vehicular WF Plan	EWF.01 - Primary Vehicular Directional	22	1	New	<p>MESSAGE A</p> <p>↑ [P] Athletics Facilities Parking H</p> <p>→ [P] Parking K - M</p> <p>Campus Hill Winery</p> <p>Horticulture & Viticulture</p> <p>Shipping / Receiving</p> <p>MESSAGE B</p> <p>↑ [P] Athletics Facilities Parking F</p> <p>Central Campus</p> <p>← [P] Public Safety Training Center</p> <p>SMOG/ State Referee</p> <p>GENERAL NOTES</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Vehicular WF Programming	Vehicular WF Plan	EWF.01 - Primary Vehicular Directional	23	1	New	<p>MESSAGE A ← [P] Athletics Facilities Parking H</p> <p>→ [P] Campus Hill Winery</p> <p>Horticulture & Viticulture</p> <p>Maintenance & Operations</p> <p>Shipping / Receiving</p> <p>MESSAGE B ↑ [P] Athletics Facilities Parking F</p> <p>← [P] Campus Hill Winery</p> <p>Horticulture & Viticulture</p> <p>Maintenance & Operations</p> <p>Shipping / Receiving</p> <p>GENERAL NOTES</p>
Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	24.1	1	New	<p>MESSAGE A H PARKING</p> <p>[EV icon]</p> <p>MESSAGE B H PARKING</p> <p>[EV icon]</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Add Alternate Bid	Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	24.2	1	New
						<p>MESSAGE A H PARKING [EV icon]</p> <p>MESSAGE B H PARKING [EV icon]</p>
	Vehicular WF Programming	Vehicular WF Plan	EWF.01 - Primary Vehicular Directional	25	1	New
						<p>MESSAGE A ↑ [P] Campus Hill Winery Parking M</p> <p>Horticulture & Viticulture Parking M</p> <p>Maintenance & Operations Parking K</p> <p>Shipping / Receiving</p> <p>Track & Field</p> <p>MESSAGE B ← Exit Campus Hill Drive</p> <p>→ Exit Collier Canyon Rd</p> <p>GENERAL NOTES</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	26	1	New	<p>MESSAGE A K 3100 Parking Only Maintenance & Operations</p> <p>MESSAGE B K 3100 Parking Only Maintenance & Operations</p> <p>GENERAL NOTES 09.16.25: Updated copy with client notes.</p>
Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	26.1	1	New	<p>MESSAGE A M PARKING</p> <p>MESSAGE B M PARKING</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Vehicular WF Programming	Vehicular WF Plan	EWF.01 - Primary Vehicular Directional	27	1	New	<p>MESSAGE A → [P] Athletics Facilities Parking H</p> <p>↑ [P] Campus Hill Winery</p> <p>Horticulture & Viticulture</p> <p>Maintenance & Operations</p> <p>Shipping/Receiving</p> <p>MESSAGE B ← [P] Athletics Facilities Parking H</p> <p>↑ [P] Central Campus</p> <p>Child Development Center</p> <p>GENERAL NOTES</p> <div style="border: 1px solid black; height: 100px; width: 100%;"></div> <p>INSTALL NOTES 05.23.25: SL recommends to install after the fence ends.</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Vehicular WF Programming	Vehicular WF Plan	EWF.01 - Primary Vehicular Directional	29	1	New	<p>MESSAGE A → [P] Child Development Center Drop Off</p> <p>Staff Parking I</p> <p>↑ [P] Athletics Facilities</p> <p>Upper Campus</p> <p>MESSAGE B ← [P] Child Development Center Drop Off</p> <p>Staff Parking I</p> <p>↑ [P] Central Campus Parking G</p> <p>Exit Collier Canyon Rd</p> <p>GENERAL NOTES</p>
Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	29.1	1	New	<p>MESSAGE A PARKING [EV icon]</p> <p>MESSAGE B PARKING [EV icon]</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Vehicular WF Programming	Vehicular WF Plan	EWF.01 - Primary Vehicular Directional	31	1	New	<p>MESSAGE A ↑ [P] Athletics Facilities</p> <p>Child Development Center</p> <p>Shipping / Receiving</p> <p>Upper Campus</p> <p>MESSAGE B ← [P] Central Campus Parking J</p> <p>↑ [P] Mertes Center for the Arts Parking A - C</p> <p>GENERAL NOTES</p>
Vehicular WF Programming	Vehicular WF Plan	PID.01 - Parking Lot ID	31.1	1	New	<p>MESSAGE A J PARKING</p> <p>MESSAGE B J PARKING</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Vehicular WF Programming	Vehicular WF Plan	EWF.01 - Primary Vehicular Directional	33	1	New	<p>MESSAGE A ↑ [P] Athletics Facilities</p> <p>Child Development Center</p> <p>Shipping / Receiving</p> <p>Upper Campus</p> <p>MESSAGE B → Exit Collier Canyon Rd</p> <p>Thank You for Visiting</p> <p>← [P] Central Campus</p> <p>Mertes Center for the Arts Parking A - C</p> <p>GENERAL NOTES</p> <p>INSTALL NOTES 05.23.25: Landscaping needs to be cleared prior to install.</p>

[Intentionally Blank]

SHANNON LEIGH

info@shannonleigh.net

7.20

[Intentionally Blank]

SHANNON LEIGH

info@shannonleigh.net

7.21

[Intentionally Blank]

SHANNON LEIGH

info@shannonleigh.net

7.22

[Intentionally Blank]

SHANNON LEIGH

info@shannonleigh.net

7.23

TYPE	NEW	REPLACE	RETROFIT	RELOCATE	REMOVE ONLY	NO ACTION	TBD	TOTAL
Identification								
EID.01 - Building ID Freestanding	21	-	-	-	-	-	-	21
EID.01a - Building ID Freestanding (Amenity)	1	-	-	-	-	-	-	1
Wayfinding								
EWF.10 - Primary Pedestrian Directional	13	-	-	-	-	-	-	13
EWF.11 - Secondary Pedestrian Directional	6	-	-	-	-	-	-	6
EWF.20 - Orientation Map	12	-	-	-	-	-	-	12
Total								53

Add Alternate Bid

TYPE	NEW	REPLACE	RETROFIT	RELOCATE	REMOVE ONLY	NO ACTION	TBD	TOTAL
Add Alternate Bid								
(Alt)EID.01a - Bid Alternate - Building ID Freestanding (Amenity)	5	-	-	-	-	-	-	5
Total								5

Reference Specification Section 01 23 00 for further information for Alternate Bid items

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Central	EWF.10 - Primary Pedestrian Directional	100	1	New	<p>MESSAGE A ← 4000 Mertes Center for the Arts ---- ↑ Buildings 400-2400</p> <p>1000 Classroom Bldg 1600 Student Services & Administration 2000 Library</p> <p>[fork/knife icon] [amphitheater icon]</p> <p>MESSAGE B → 4000 Mertes Center for the Arts</p>
						GENERAL NOTES
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	101	1	New	<p>MESSAGE A 4000 Mertes Center for the Arts</p> <p>MESSAGE B 4000 Mertes Center for the Arts</p>
Pedestrian WF Programming	Pedestrian Central	EWF.20 - Orientation Map	103	1	New	<p>MESSAGE A [orientation map - refer to drawing sheet]</p> <p>MESSAGE B [orientation map - refer to drawing sheet]</p>
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	104	1	New	<p>MESSAGE A 1000 Classroom Building</p> <p>MESSAGE B 1000 Classroom Building</p>
						GENERAL NOTES
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	105	1	New	<p>MESSAGE A 400 Middle College</p> <p>MESSAGE B 400 Middle College</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	107	1	New	<p>MESSAGE A 1000 Classroom Building</p> <p>MESSAGE B 1000 Classroom Building</p>
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	109	1	New	<p>MESSAGE A 1300 Classroom Building</p> <p>GENERAL NOTES</p> <div style="border: 1px solid black; height: 50px; width: 100%;"></div>
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	110	1	New	MESSAGE A 1000 Classrooms
Pedestrian WF Programming	Pedestrian Central	EWF.20 - Orientation Map	112	1	New	<p>MESSAGE A [orientation map - refer to drawing sheet]</p> <p>MESSAGE B [orientation map - refer to drawing sheet]</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Central	EWF.11 - Secondary Pedestrian Directional	113	1	New	<p>MESSAGE A ← Buildings 400 - 1310</p> <p>4000 Mertes Center for the Arts</p> <p>[amphitheater icon]</p> <p>-----</p> <p>↑ Buildings 1600 - 2400</p> <p>Cafeteria</p> <p>1600 Student Services & Administration</p> <p>[fork/knife icon]</p> <p>MESSAGE B → Buildings 400 - 1310</p> <p>4000 Mertes Center for the Arts</p> <p>[amphitheater icon]</p> <p>-----</p> <p>↑ 1000 Classroom Bldg</p> <p>GENERAL NOTES</p>
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	115	1	New	MESSAGE A 1310 Veterans Resource Center
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	117	1	New	<p>MESSAGE A 700 Graphic Design, Digital Media & Photography</p> <p>MESSAGE B 700 Graphic Design, Digital Media & Photography</p>
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	119	1	New	MESSAGE A 500 Classroom Building

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Central	EID.01a - Building ID Freestanding (Amenity)	121	1	New	<p>MESSAGE A [amphitheater icon] Amphitheater</p> <p>GENERAL NOTES</p>
Pedestrian WF Programming	Pedestrian Central	EWF.20 - Orientation Map	123	1	New	<p>MESSAGE A [orientation map - refer to drawing sheet]</p> <p>MESSAGE B [orientation map - refer to drawing sheet]</p>
Pedestrian WF Programming	Pedestrian Central	EWF.10 - Primary Pedestrian Directional	125	1	New	<p>MESSAGE A ← 1900 Information Technology Services Amphitheater [amphitheater icon] ---- ↑ Buildings 1600 - 2400 Cafeteria 1600 Student Services & Administration 1700 Health Center & Campus Safety 2000 Library [fork/knife icon]</p> <p>MESSAGE B → 1900 Information Technology Services Amphitheater [amphitheater icon] ---- ↑ 4000 Mertes Center for the Arts</p> <p>GENERAL NOTES</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Central	EWF.20 - Orientation Map	126	1	New	<p>MESSAGE A [orientation map - refer to drawing sheet]</p> <p>MESSAGE B [BLANK]</p> <p>GENERAL NOTES</p> <div style="border: 1px solid black; height: 40px; margin-top: 5px;"></div>
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	133	1	New	<p>MESSAGE A 1850 Science Technology Center 2</p> <p>MESSAGE B 1850 Science Technology Center 2</p>
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	138	1	New	<p>MESSAGE A 1800 Science Technology Center 1</p> <p>MESSAGE B 1800 Science Technology Center 1</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Central	EWF.10 - Primary Pedestrian Directional	139	1	New	<p>MESSAGE A → Cafeteria</p> <p>1600 Student Services & Administration</p> <p>[fork/knife icon]</p> <p>-----</p> <p>↑ Buildings 1700-2400</p> <p>2000 Library</p> <p>2400 Multi-Disciplinary Education Building</p> <p>Upper Campus</p> <p>MESSAGE B ← Cafeteria</p> <p>1600 Student Services & Administration</p> <p>[fork/knife icon]</p> <p>-----</p> <p>↑ Buildings 400-1310</p> <p>1000 Classroom Bldg</p> <p>4000 Mertes Center for the Arts</p> <p>[ampitheater icon]</p> <p>GENERAL NOTES</p>
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	141	1	New	<p>MESSAGE A 1600 Student Services & Administration</p>
Pedestrian WF Programming	Pedestrian Central	EWF.20 - Orientation Map	145	1	New	<p>MESSAGE A [orientation map - refer to drawing sheet]</p> <p>MESSAGE B [orientation map - refer to drawing sheet]</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Central	EWF.10 - Primary Pedestrian Directional	146	1	New	<p>MESSAGE A → Cafeteria</p> <p>1600 Student Services & Administration</p> <p>[fork/knife icon]</p> <p>---</p> <p>← Buildings 2400-3700</p> <p>2400 Multi-Disciplinary Education Building</p> <p>MESSAGE B → Buildings 2400-3700</p> <p>2400 Multi-Disciplinary Education Building</p> <p>---</p> <p>← Cafeteria</p> <p>1600 Student Services & Administration</p> <p>[fork/knife icon]</p> <p>---</p> <p>↑ Buildings 400-2100</p> <p>1700 Health Center & Campus Safety</p> <p>1800-1850 Science Technology Center 1 & 2</p> <p>2000 Library</p> <p>4000 Mertes Center for the Arts</p> <p>[amphitheater icon]</p> <p>GENERAL NOTES</p>
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	148	1	New	<p>MESSAGE A 1700 Campus Safety & Health Center</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Central	EWF.10 - Primary Pedestrian Directional	150	1	New	<p>MESSAGE A → 1700 Health Center & Campus Safety ---- ↗ Buildings 2100 & 2400 2500-3700 Upper Campus Bldgs [pool icon][basketball icon][soccer field icon][track icon][outdoor courts icon] ---- ← 1800-1850 Science Technology Center 1 & 2 ---- ↖ 2300 Child Development Center</p> <p>MESSAGE B → 1800-1850 Science Technology Center 1 & 2 ---- ← 1700 Health Center & Campus Safety ---- ↑ Buildings 400-1600 Cafeteria 1000 Classroom Bldg 1600 Student Services & Administration 4000 Mertes Center for the Arts [fork/knife][amphitheater icon]</p> <p>GENERAL NOTES</p>
Pedestrian WF Programming	Pedestrian Central	EWF.20 - Orientation Map	151	1	New	<p>MESSAGE A [orientation map - refer to drawing sheet]</p> <p>MESSAGE B [orientation map - refer to drawing sheet]</p>
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	152	1	New	<p>MESSAGE A 2000 Library</p> <p>MESSAGE B 2000 Library</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	153	1	New	<p>MESSAGE A 2100 Academic Support</p>
Pedestrian WF Programming	Pedestrian Central	EWF.11 - Secondary Pedestrian Directional	155	1	New	<p>MESSAGE A ↗ 2400 Multi-Disciplinary Education Building 2500 Physical Education Complex [basketball icon] ---- ↑ Building 2100 3000-3700 Upper Campus Bldgs [pool icon][soccer field icon][track icon][outdoor courts icon]</p> <p>MESSAGE B → Buildings 1800 - 2300 2000 Library ---- ↑ Buildings 400 - 1900 Cafeteria 1600 Student Services & Administration 4000 Mertes Center for the Arts [fork/knife icon][amphitheater icon]</p> <p>GENERAL NOTES</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	157	1	New	<p>MESSAGE A 2400 Multi-Disciplinary Education Building</p> <p>MESSAGE B 2400 Multi-Disciplinary Education Building</p> <p>GENERAL NOTES</p>
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	160	1	New	<p>MESSAGE A 2400 Multi-Disciplinary Education Building</p> <p>MESSAGE B 2400 Multi-Disciplinary Education Building</p> <p>GENERAL NOTES</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Central	EWF.10 - Primary Pedestrian Directional	166	1	New	<p>MESSAGE A ↗ 2500 Physical Education Complex [basketball icon] ---- ↑ Buildings 3000-3700 Upper Campus 3400-3500 Public Safety Training Center [pool icon][soccer field icon][track icon][outdoor courts icon]</p> <p>MESSAGE B ↙ 2400 Multi-Disciplinary Education Building ↑ Buildings 400-2300 Cafeteria 1600 Student Services & Administration 1700 Health Center & Campus Safety 2000 Library 4000 Mertes Center for the Arts [fork/knife icon][amphitheater icon]</p> <p>GENERAL NOTES</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Central	EWF.11 - Secondary Pedestrian Directional	167	1	New	<p>MESSAGE A ↑ Buildings 2500-3700</p> <p>Upper Campus</p> <p>2500 Physical Education Complex</p> <p>[pool icon][basketball icon][soccer field icon][track icon][outdoor courts icon]</p> <p>MESSAGE B ← 2400 Multi-Disciplinary Education Building</p> <p>----</p> <p>↑ Buildings 400 - 2300</p> <p>2000 Library</p> <p>4000 Mertes Center for the Arts</p> <p>[fork/knife icon][amphitheater icon]</p> <p>GENERAL NOTES</p>
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	168	1	New	MESSAGE A 2100 Academic Support
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	171	1	New	<p>MESSAGE A 2300 Child Development Center</p> <p>MESSAGE B 2300 Child Development Center</p>
Pedestrian WF Programming	Pedestrian Central	EID.01 - Building ID Freestanding	172	1	New	<p>MESSAGE A 2300 Child Development Center</p> <p>MESSAGE B 2300 Child Development Center</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Upper	EWF.20 - Orientation Map	200	1	New	<p>MESSAGE A [orientation map - refer to drawing sheet]</p> <p>MESSAGE B [orientation map - refer to drawing sheet]</p>
Pedestrian WF Programming	Pedestrian Upper	EID.01 - Building ID Freestanding	201	1	New	<p>MESSAGE A 2500 Physical Education Complex</p> <p>MESSAGE B 2500 Physical Education Complex</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Upper	EWF.11 - Secondary Pedestrian Directional	202	1	New	<p>MESSAGE A → Buildings 400 - 2400</p> <p>Central Campus</p> <p>2400 Multi-Disciplinary Education Building</p> <p>4000 Mertes Center for the Arts</p> <p>[fork/knife icon][amphitheater icon]</p> <p>-----</p> <p>↑ 2500 Physical Education Complex</p> <p>[basketball icon]</p> <p>MESSAGE B ← Buildings 400 - 2400</p> <p>Central Campus</p> <p>2400 Multi-Disciplinary Education Building</p> <p>4000 Mertes Center for the Arts</p> <p>[fork/knife icon][amphitheater icon]</p> <p>-----</p> <p>↗ Buildings 3000-3700</p> <p>Upper Campus</p> <p>[pool icon][soccer field icon][track icon][outdoor courts icon]</p> <p>GENERAL NOTES</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Upper	EWF.10 - Primary Pedestrian Directional	203	1	New	<p>MESSAGE A ← 2500 Physical Education Complex [basketball icon] ---- ↑ Buildings 400-2400 Central Campus 4000 Mertes Center for the Arts [fork/knife icon][amphitheater icon]</p> <p>MESSAGE B → 2500 Physical Education Complex [basketball icon] ---- ↑ Buildings 3000 - 3700 Upper Campus [pool icon][soccer field][track icon][outdoor courts icon]</p> <p>GENERAL NOTES</p>
Pedestrian WF Programming	Pedestrian Upper	EID.01a - Building ID Freestanding (Amenity)	204	1	New	<p>MESSAGE A [pool icon] Aquatic Center</p> <p>GENERAL NOTES</p>
Pedestrian WF Programming	Pedestrian Upper	EWF.20 - Orientation Map	205	1	New	<p>MESSAGE A [orientation map - refer to drawing sheet]</p> <p>MESSAGE B [orientation map - refer to drawing sheet]</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS	
Pedestrian WF Programming	Pedestrian Upper	EWF.10 - Primary Pedestrian Directional	208	1	New	<p>MESSAGE A ↑ Buildings 3000 - 3700 [track icon][outdoor courts icon]</p> <p>MESSAGE B ↑ Buildings 400-2500 Central Campus 1600 Student Services & Administration 1700 Health Center & Campus Safety 2000 Library 2500 Physical Education Complex 4000 Mertes Center for the Arts [pool icon][basketball icon]</p> <p>GENERAL NOTES</p>	
Pedestrian WF Programming	Pedestrian Upper	EWF.20 - Orientation Map	209	1	New	<p>MESSAGE A [orientation map - refer to drawing sheet]</p> <p>MESSAGE B [orientation map - refer to drawing sheet]</p>	
Add Alternate Bid	Pedestrian WF Programming	Pedestrian Upper	EID.01a - Building ID Freestanding (Amenity)	210	1	New	<p>MESSAGE A [soccer icon] Soccer Field</p> <p>MESSAGE B [soccer icon] Soccer Field</p> <p>GENERAL NOTES</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Upper	EWF.20 - Orientation Map	214	1	New	<p>MESSAGE A [orientation map - refer to drawing sheet]</p> <p>MESSAGE B [orientation map - refer to drawing sheet]</p> <p>GENERAL NOTES</p>
Pedestrian WF Programming	Pedestrian Upper	EWF.10 - Primary Pedestrian Directional	215	1	New	<p>MESSAGE A ↑ Buildings 3000 - 3700 [soccer field icon][track icon][outdoor courts icon]</p> <p>MESSAGE B ↑ Buildings 400-2500</p> <p>Central Campus 1600 Student Services & Administration 1700 Health Center & Campus Safety 2000 Library 2500 Physical Education Complex 4000 Mertes Center for the Arts [basketball icon]</p> <p>GENERAL NOTES</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Upper	EWF.11 - Secondary Pedestrian Directional	220	1	New	<p>MESSAGE A → Buildings 400-2500</p> <p>Central Campus</p> <p>2500 Physical Education Complex</p> <p>[basketball icon][soccer field icon]</p> <p>---</p> <p>← Buildings 3000-3700</p> <p>[track icon][outdoor courts icon]</p> <p>MESSAGE B → Buildings 3000-3700</p> <p>[track icon][outdoor courts icon]</p> <p>---</p> <p>← Buildings 400-2500</p> <p>Central Campus</p> <p>2500 Physical Education Complex</p> <p>[basketball icon][soccer field icon]</p> <p>---</p> <p>↑ Spectator Area</p> <p>GENERAL NOTES</p> <div style="border: 1px solid black; height: 40px; width: 100%;"></div>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Upper	EWF.10 - Primary Pedestrian Directional	227	1	New	<p>MESSAGE A → Spectator Area ---- ↑ Buildings 3000 - 3700</p> <p>[track icon][outdoor courts icon]</p> <p>MESSAGE B ← Spectator Area ---- ↑ Buildings 400-2500</p> <p>Central Campus</p> <p>2500 Physical Education Complex</p> <p>[pool icon][basketball icon][soccer field icon]</p> <p>GENERAL NOTES</p>
Pedestrian WF Programming	Pedestrian Upper	EWF.20 - Orientation Map	228	1	New	<p>MESSAGE A [orientation map - refer to drawing sheet]</p> <p>MESSAGE B [orientation map - refer to drawing sheet]</p>
Pedestrian WF Programming	Pedestrian Upper	EWF.10 - Primary Pedestrian Directional	230	1	New	<p>MESSAGE A ↑ Buildings 3000 - 3700</p> <p>[track icon][outdoor courts icon]</p> <p>MESSAGE B ↑ Buildings 400 - 2500</p> <p>Central Campus</p> <p>2500 Physical Education Complex</p> <p>[pool icon][basketball icon][soccer field icon]</p> <p>GENERAL NOTES</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
	Pedestrian WF Programming	Pedestrian Upper	EID.01a - Building ID Freestanding (Amenity)	231	1	New
						<p>MESSAGE A (track icon) Track & Field</p> <p>MESSAGE B (track icon) Track & Field</p> <p>GENERAL NOTES</p>
	Pedestrian WF Programming	Pedestrian Upper	EWF.10 - Primary Pedestrian Directional	233	1	New
						<p>MESSAGE A ↗ 3400 Public Safety Training Center</p> <p>3500 Advanced Manufacturing & Transportation</p> <p>----</p> <p>↑ 3000 Shipping/Receiving</p> <p>3100 Maintenance & Operations</p> <p>3200 Field House</p> <p>3300 Horticulture</p> <p>3600 Viticulture & Enology</p> <p>3700 Campus Hill Winery</p> <p>[toilet icon][outdoor courts icon]</p> <p>MESSAGE B ←3400 Public Safety Training Center</p> <p>3500 Advanced Manufacturing & Transportation</p> <p>----</p> <p>↑ Buildings 400 - 2500</p> <p>Central Campus</p> <p>[pool icon][basketball icon][soccer field icon]</p> <p>GENERAL NOTES</p>

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Upper	EWF.10 - Primary Pedestrian Directional	235	1	New	<p>MESSAGE A → Track & Field [track icon] ---- ↗ 3200 Field House</p> <p>3400 Public Safety Training Center</p> <p>3500 Advanced Manufacturing & Transportation</p> <p>[toilet icon]</p> <p>MESSAGE B ↑ 3000 Shipping/Receiving</p> <p>3100 Maintenance & Operations</p> <p>3300 Horticulture</p> <p>3600 Viticulture & Enology</p> <p>3700 Campus Hill Winery</p> <p>[outdoor courts icon]</p> <p>GENERAL NOTES</p>
	Pedestrian WF Programming	Pedestrian Upper	EID.01a - Building ID Freestanding (Amenity)	237.1	1	New

Add Alternate Bid

PLAN GROUP	PLAN	PLOT TYPE	PLOT NAME	QTY	INSTALL TYPE	DETAILS
Pedestrian WF Programming	Pedestrian Upper	EWF.11 - Secondary Pedestrian Directional	239	1	New	<p>MESSAGE A ↖ 3000 Shipping/Receiving 3100 Maintenance & Operations 3200 Field House 3300 Horticulture 3600 Viticulture & Enology 3700 Campus Hill Winery [track icon][outdoor courts icon]</p> <p>MESSAGE B [blank]</p> <p>GENERAL NOTES</p>
Pedestrian WF Programming	Pedestrian Upper Track	EWF.20 - Orientation Map	306	1	New	<p>MESSAGE A [orientation map - refer to drawing sheet]</p> <p>MESSAGE B [orientation map - refer to drawing sheet]</p>
Add Alternate Bid	Pedestrian WF Programming	Pedestrian Upper Track	EID.01a - Building ID Freestanding (Amenity)	309	1	New
						<p>MESSAGE A (net court icon) Outdoor Courts</p> <p>MESSAGE B (net court icon) Outdoor Courts</p> <p>GENERAL NOTES</p>

Signage Contractor is responsible to verify signs represented in this removal plan - signs shown with images are for general awareness. The quantity of signs is to be verified by the Signage Contractor.

3738 Las Positas College Livermore

REMOVAL PLANS Vehicular Sign Removal Plan

Master Document

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
1

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
2

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
2.1

PLOT TYPE
(Alt) RM - Bid Alternate Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
3

PLOT TYPE
(Alt) RM - Bid Alternate Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
3.1

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
3.2

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
3.3

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
3.4

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
Vehicular Sign
Removal Plan

LOCATION
3.5

PLOT TYPE
(Alt) RM - Bid Alternate Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
3.6

PLOT TYPE
(Alt) RM - Bid Alternate Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
3.7

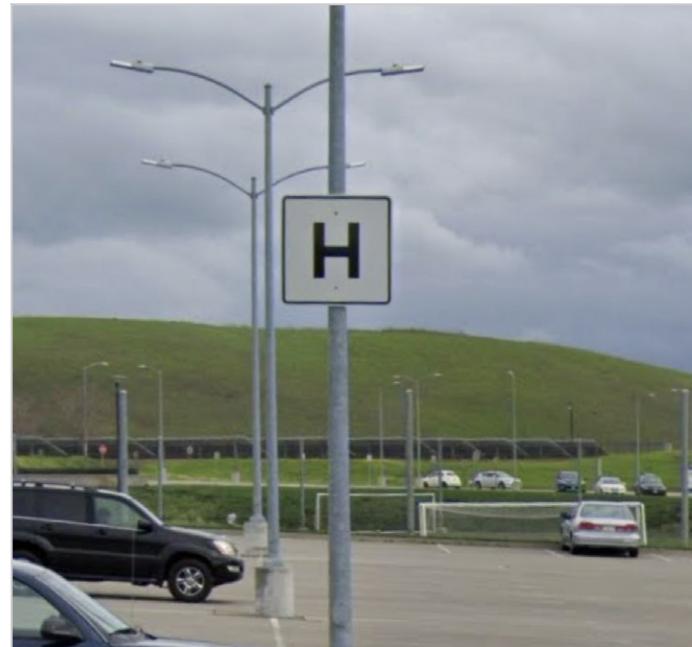
PLOT TYPE
(Alt) RM - Bid Alternate Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS


PLAN
**Vehicular Sign
Removal Plan**

LOCATION
4

PLOT TYPE
(Alt) RM - Bid Alternate Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
4.1

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
5

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
5.1

PLOT TYPE
(Alt) RM - Bid Alternate Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
5.2

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
6

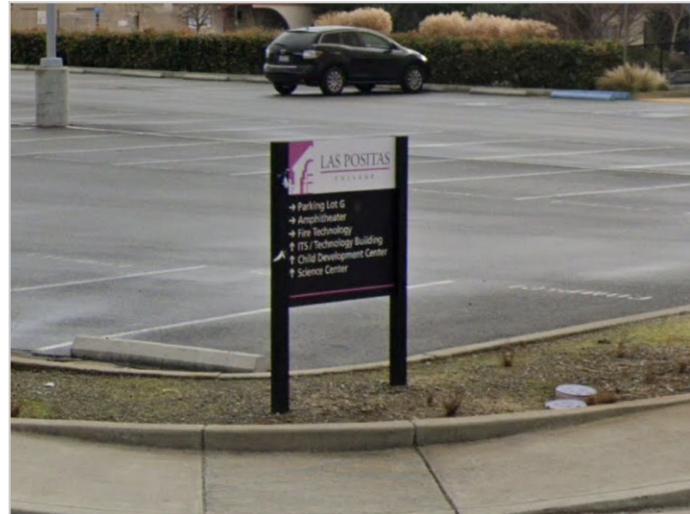
PLOT TYPE
(Alt) RM - Bid Alternate Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS


PLAN
**Vehicular Sign
Removal Plan**

LOCATION
6.1

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
6.2

PLOT TYPE
(Alt) RM - Bid Alternate Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
6.3

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
6.4

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
6.5

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
6.6

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
6.7

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
7

PLOT TYPE
(Alt) RM - Bid Alternate Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
7.1

PLOT TYPE
(Alt) RM - Bid Alternate Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
7.2

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
8

PLOT TYPE
(Alt) RM - Bid Alternate Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Vehicular Sign
Removal Plan**

LOCATION
8.1

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

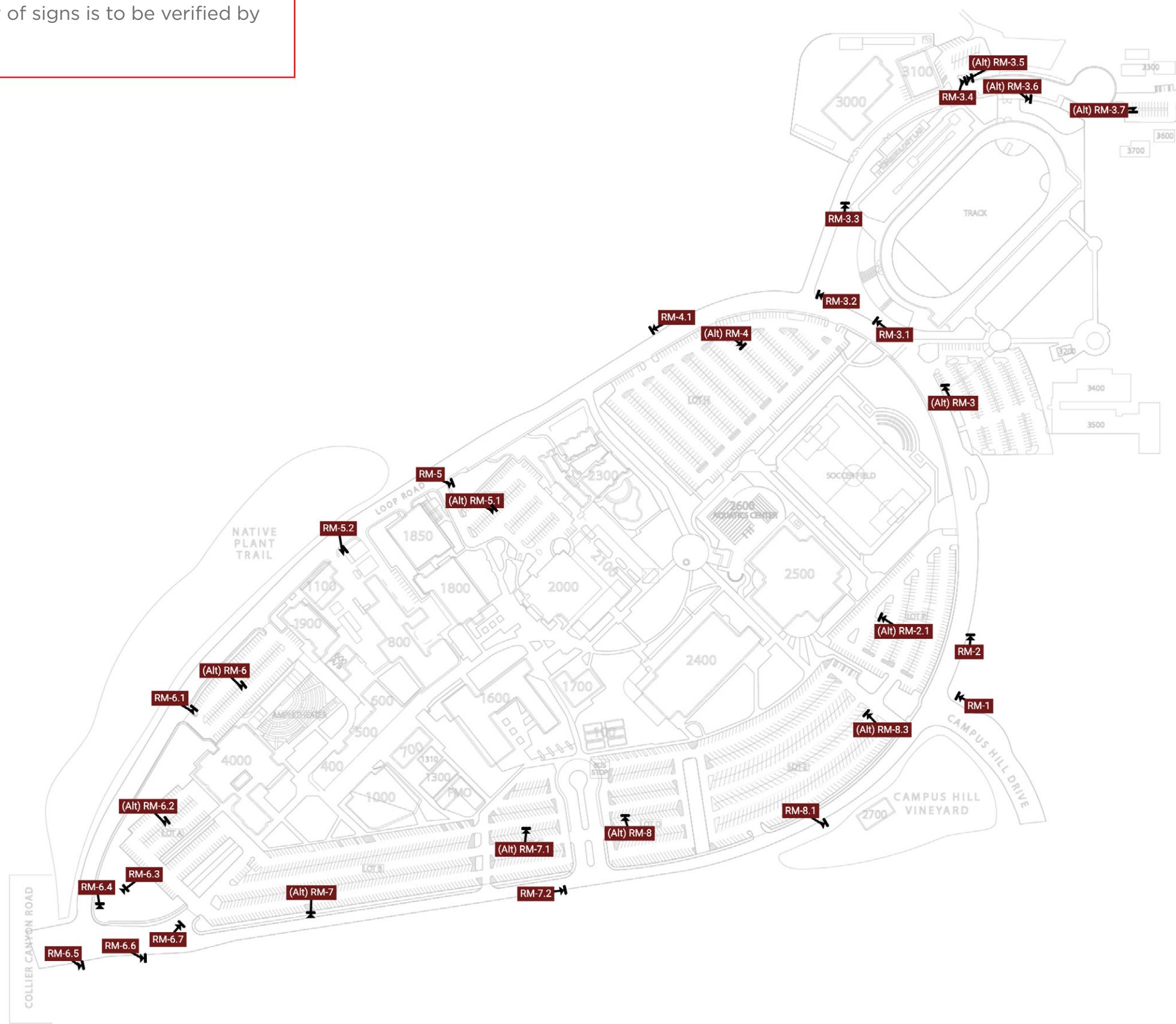
PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

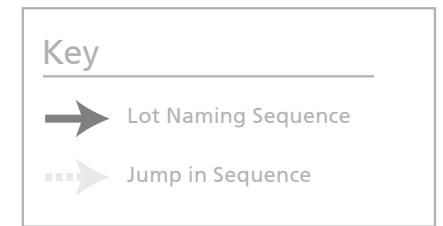
PLAN
**Vehicular Sign
Removal Plan**

LOCATION
8.3

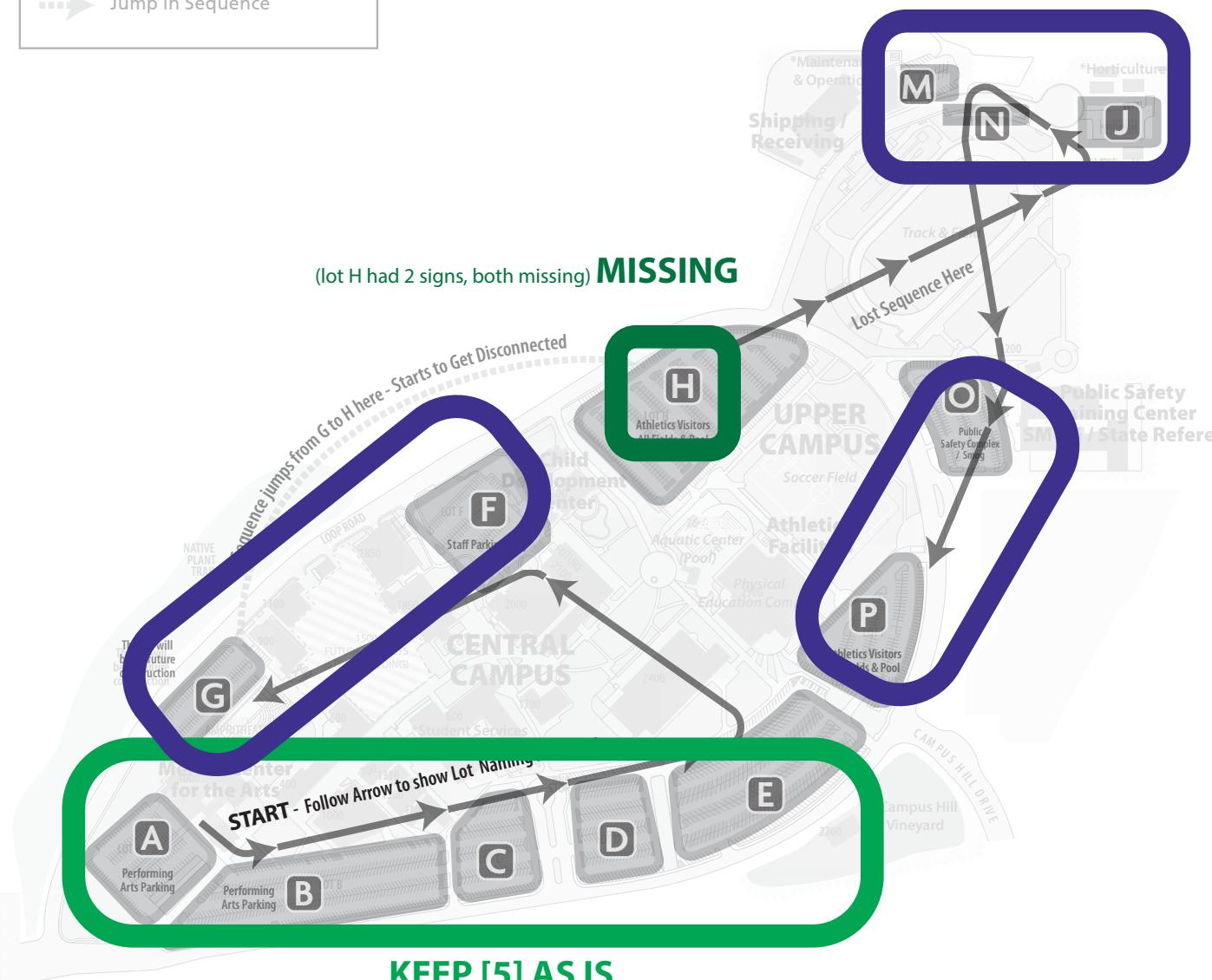
PLOT TYPE
(Alt) RM - Bid Alternate Removal


INSTALL TYPE
Remove Only

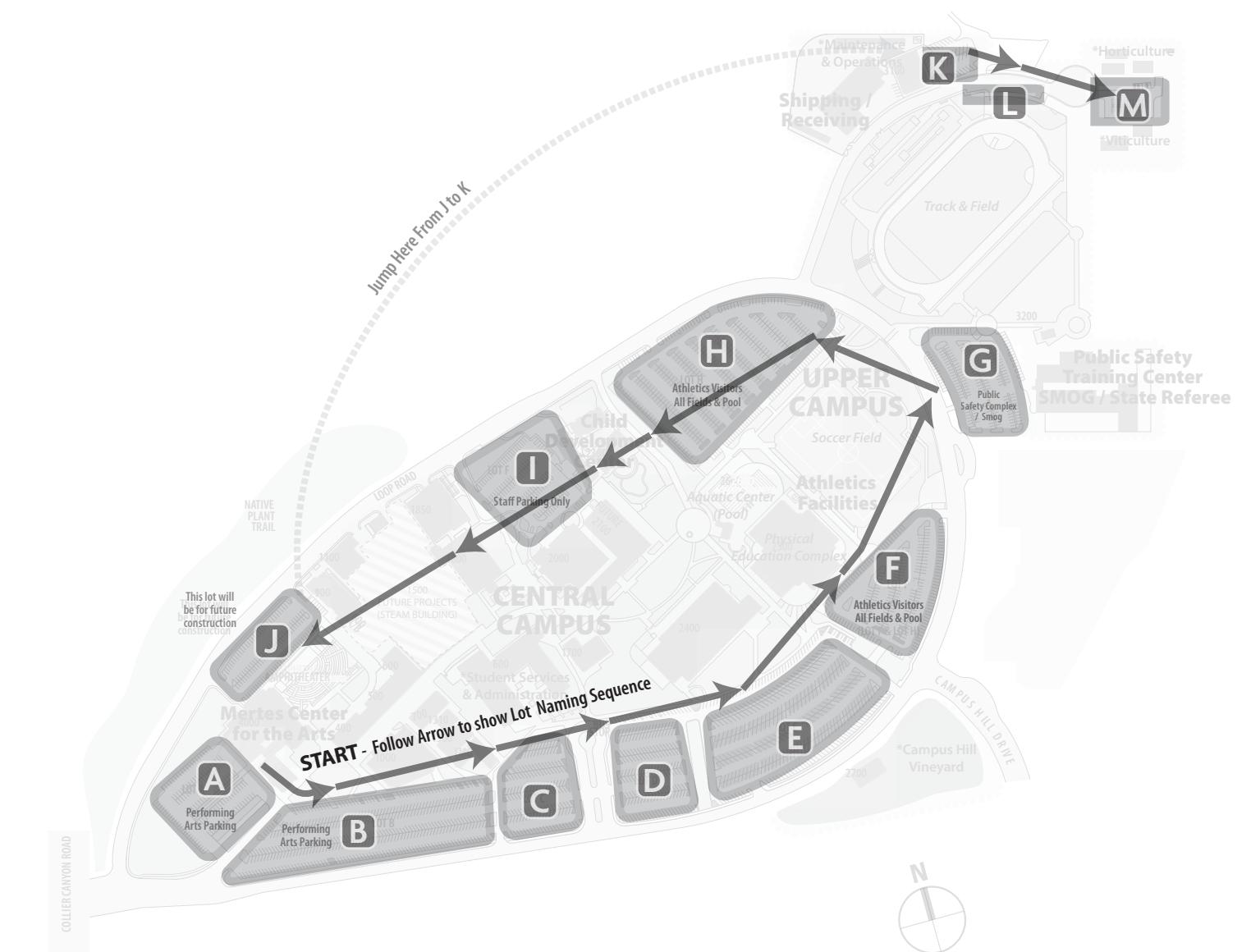
QUANTITY
1



TYPE	NEW	REPLACE	RETROFIT	RELOCATE	REMOVE ONLY	NO ACTION	TBD	TOTAL
Add Alternate Bid								
(Alt) RM - Bid Alternate Removal	-	-	-	-	13	-	-	
Removal								
RM - Removal	-	-	-	-	17	-	-	


Signage Contractor is responsible to verify signs represented in this removal plan - signs shown with images are for general awareness. The quantity of signs is to be verified by the Signage Contractor.

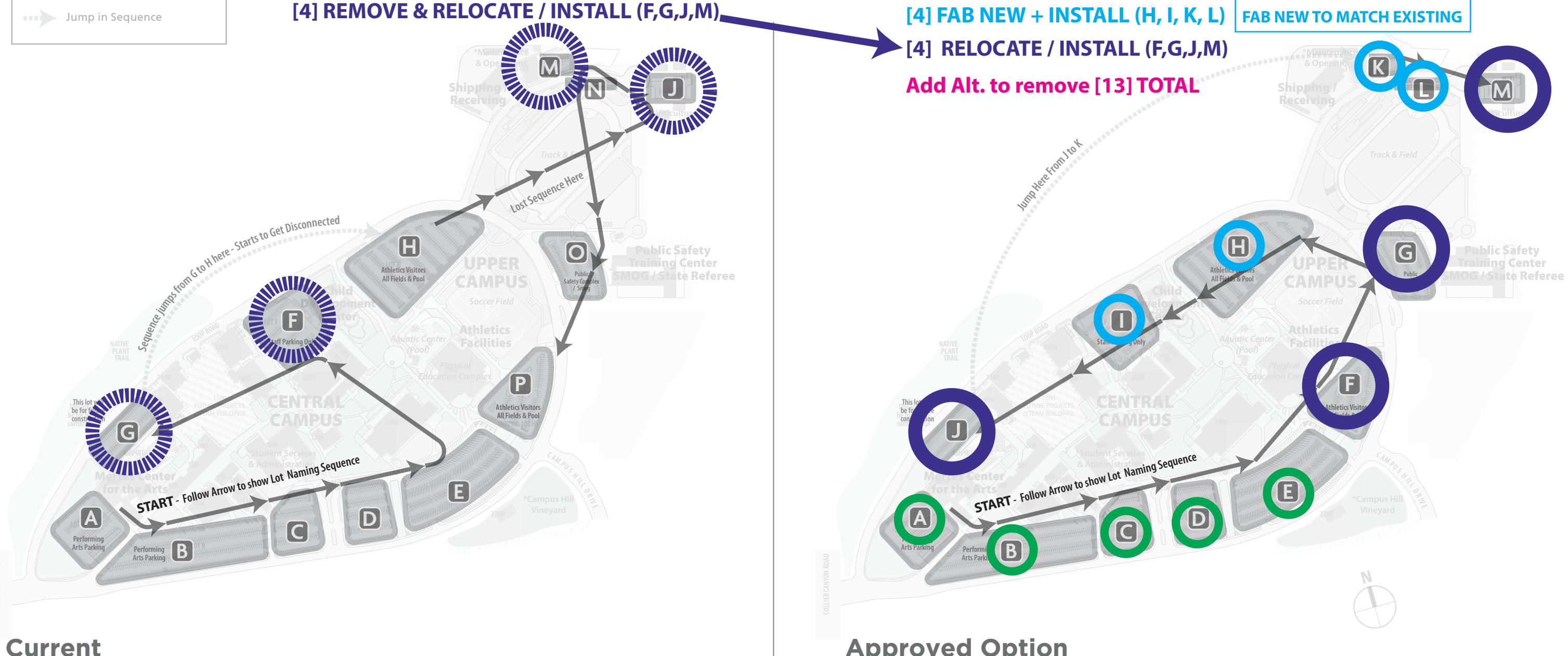
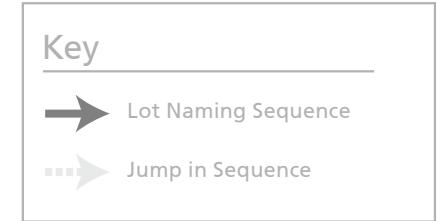
Parking Lot Renaming



[4] REMOVE & RELOCATE / INSTALL (F,G,J,M) [3] REMOVE & DISCARD (N,O,P)

Current

The current numbering program is out of sequence. Renaming the lots will solve this and aid wayfinding efforts.

Approved Option

The lot sequence flows from the south end, following the loop in a counter clockwise direction. Then Jumping up the the far north end of the campus.

Client request 2025.06.02

Parking Lot Renaming

Client request 2025.06.02

Signage Contractor is responsible to verify signs represented in this removal plan - signs shown with images are for general awareness. The quantity of signs is to be verified by the Signage Contractor.

3738 Las Positas College Livermore

REMOVAL PLANS Pedestrian Sign Removal Plan

Master Document

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
Pedestrian Sign
Removal Plan

LOCATION
50

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

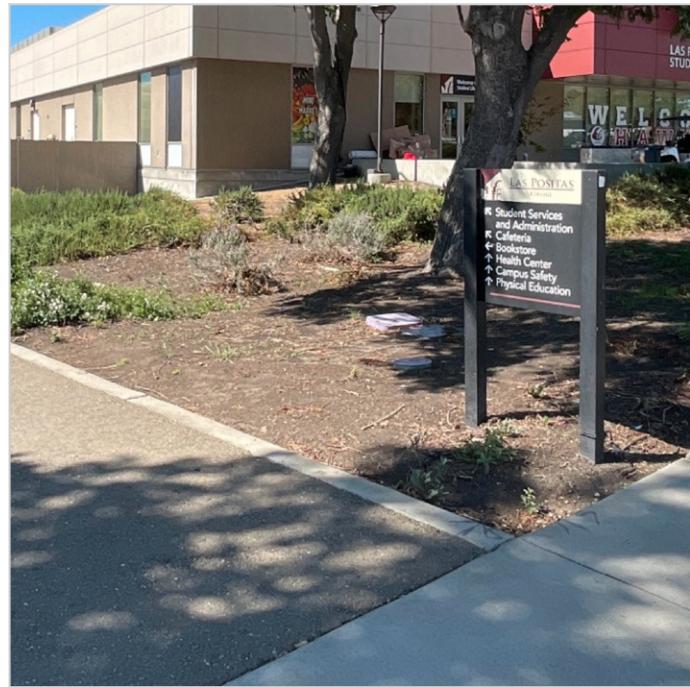
PLAN GROUP
REMOVAL PLANS

PLAN
**Pedestrian Sign
Removal Plan**

LOCATION
51

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS


PLAN
**Pedestrian Sign
Removal Plan**

LOCATION
52.2

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PLAN GROUP
REMOVAL PLANS

PLAN
**Pedestrian Sign
Removal Plan**

LOCATION
52.3

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Pedestrian Sign
Removal Plan**

LOCATION
53

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
Pedestrian Sign
Removal Plan

LOCATION
54

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Pedestrian Sign
Removal Plan**

LOCATION
58

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PLAN GROUP
REMOVAL PLANS

PLAN
Pedestrian Sign
Removal Plan

LOCATION
60

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Pedestrian Sign
Removal Plan**

LOCATION
61

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
Pedestrian Sign
Removal Plan

LOCATION
65.2

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
Pedestrian Sign
Removal Plan

LOCATION
65.3

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
Pedestrian Sign
Removal Plan

LOCATION
66

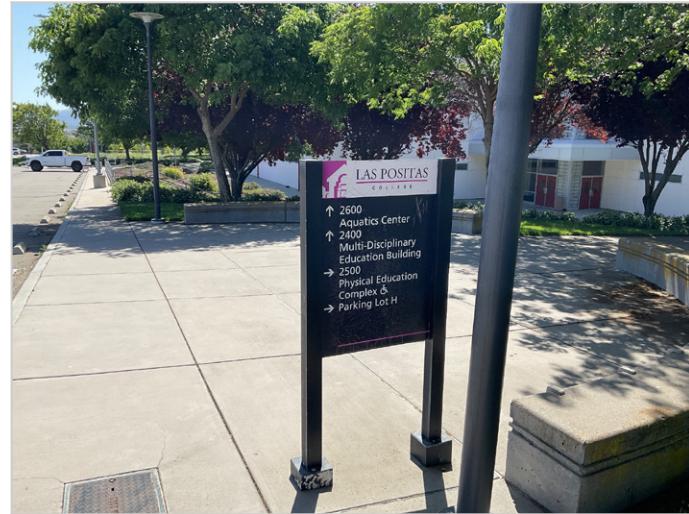
PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS


PLAN
Pedestrian Sign
Removal Plan

LOCATION
67

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
Pedestrian Sign
Removal Plan

LOCATION
68.2

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

PLAN GROUP
REMOVAL PLANS

PLAN
**Pedestrian Sign
Removal Plan**

LOCATION
68.3

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

QUANTITY
1

PROJECT
3738 Las Positas College
Livermore

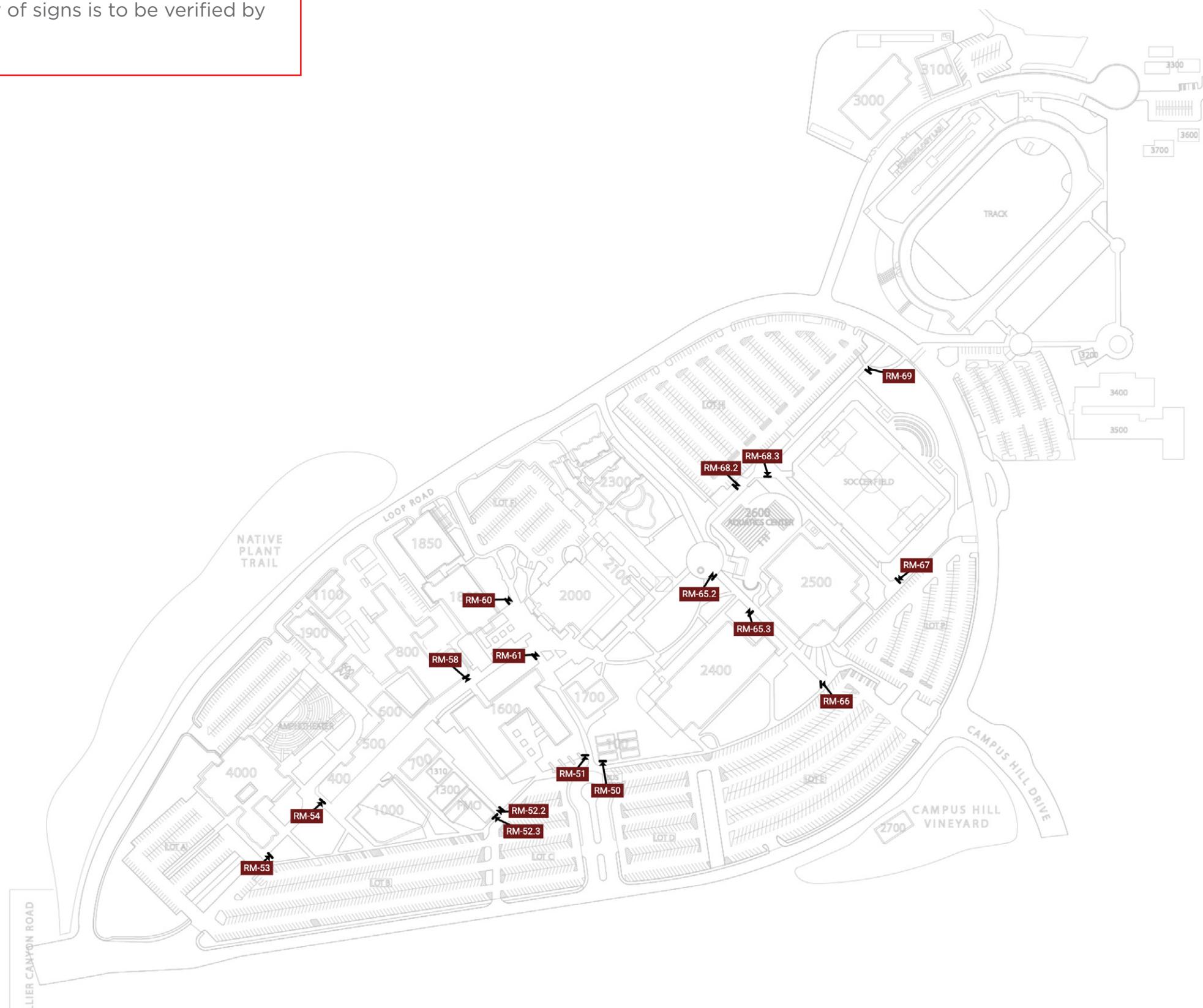
PLAN GROUP
REMOVAL PLANS

PLAN
Pedestrian Sign
Removal Plan

LOCATION
69

PLOT TYPE
RM - Removal

INSTALL TYPE
Remove Only

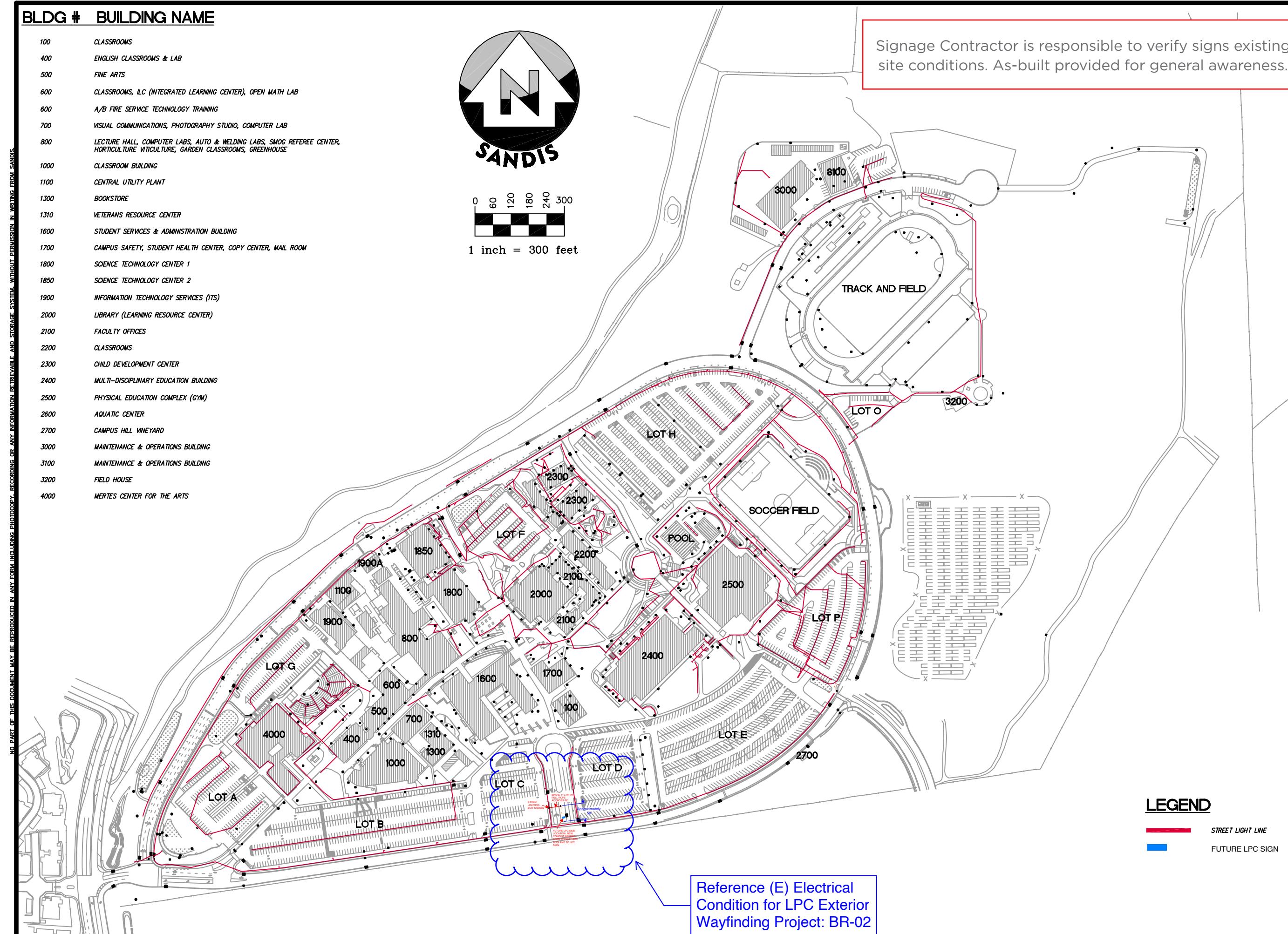

QUANTITY
1

TYPE	NEW	REPLACE	RETROFIT	RELOCATE	REMOVE ONLY	NO ACTION	TBD	TOTAL
Removal								
RM - Removal	-	-	-	-	16	-	-	

Signage Contractor is responsible to verify signs represented in this removal plan - signs shown with images are for general awareness. The quantity of signs is to be verified by the Signage Contractor.

Signage Contractor is responsible to verify signs represented in this removal plan - signs shown with images are for general awareness. The quantity of signs is to be verified by the Signage Contractor.

BLDG # BUILDING NAME


100	CLASSROOMS
400	ENGLISH CLASSROOMS & LAB
500	FINE ARTS
600	CLASSROOMS, ILC (INTEGRATED LEARNING CENTER), OPEN MATH LAB
600	A/B FIRE SERVICE TECHNOLOGY TRAINING
700	VISUAL COMMUNICATIONS, PHOTOGRAPHY STUDIO, COMPUTER LAB
800	LECTURE HALL, COMPUTER LABS, AUTO & WELDING LABS, SMOG REFEREE CENTER, HORTICULTURE VITICULTURE, GARDEN CLASSROOMS, GREENHOUSE
1000	CLASSROOM BUILDING
1100	CENTRAL UTILITY PLANT
1300	BOOKSTORE
1310	VETERANS RESOURCE CENTER
1600	STUDENT SERVICES & ADMINISTRATION BUILDING
1700	CAMPUS SAFETY, STUDENT HEALTH CENTER, COPY CENTER, MAIL ROOM
1800	SCIENCE TECHNOLOGY CENTER 1
1850	SCIENCE TECHNOLOGY CENTER 2
1900	INFORMATION TECHNOLOGY SERVICES (ITS)
2000	LIBRARY (LEARNING RESOURCE CENTER)
2100	FACULTY OFFICES
2200	CLASSROOMS
2300	CHILD DEVELOPMENT CENTER
2400	MULTI-DISCIPLINARY EDUCATION BUILDING
2500	PHYSICAL EDUCATION COMPLEX (GYM)
2600	AQUATIC CENTER
2700	CAMPUS HILL VINEYARD
3000	MAINTENANCE & OPERATIONS BUILDING
3100	MAINTENANCE & OPERATIONS BUILDING
3200	FIELD HOUSE
4000	MERTES CENTER FOR THE ARTS

NO PART OF THIS DOCUMENT MAY BE REPRODUCED IN ANY FORM INCLUDING PHOTOCOPY, RECORDING OR ANY INFORMATION RETRIEVEABLE AND STORAGE SYSTEM, WITHOUT PERMISSION IN WRITING FROM SANDIS.

0 60 120 180 240 300
1 inch = 300 feet

Signage Contractor is responsible to verify signs existing site conditions. As-built provided for general awareness.

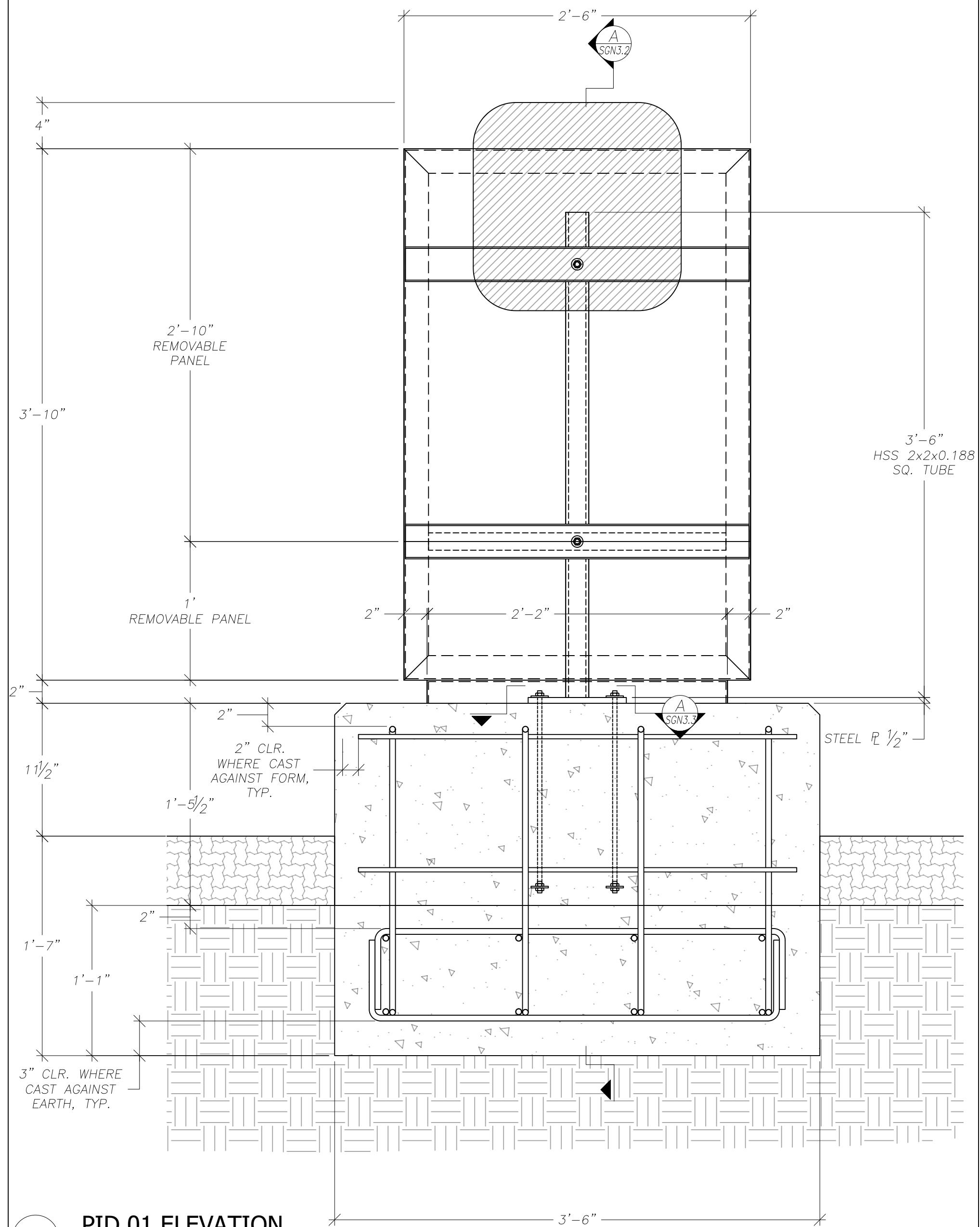
STREET LIGHT SYSTEM DIAGRAM

No.	REVISION	DATE	DATE BY

CAMPUS UTILITY SURVEY

DATE: 2/28/2020
SCALE: 1"=300'
DRAWN BY: GL
APPROVED BY: MAK
SANDIS DRAWING No.: 618184

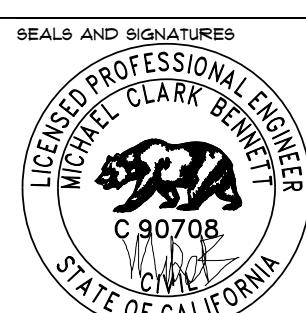
SHEET


SLD

OF 106 SHEETS

J.D. CAHILL ELECTRIC
LIVERMORE, CA 94551
AZ-BUILT

NOTE: PEDESTAL/PLINTH TO BE FORMED W/ BOARD FORM OR BOARD FORM LINER. PATTERN T.B.D.

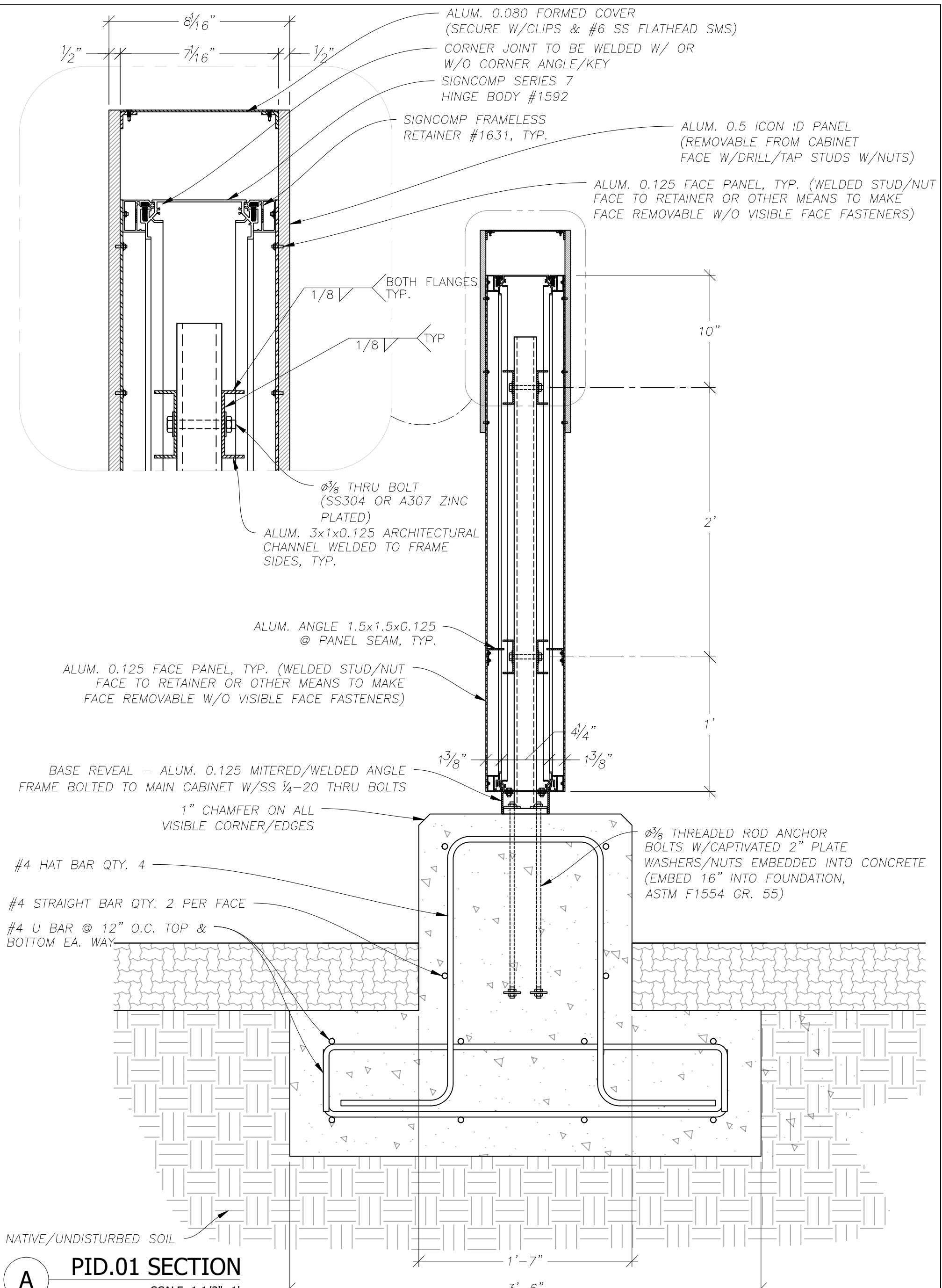


A

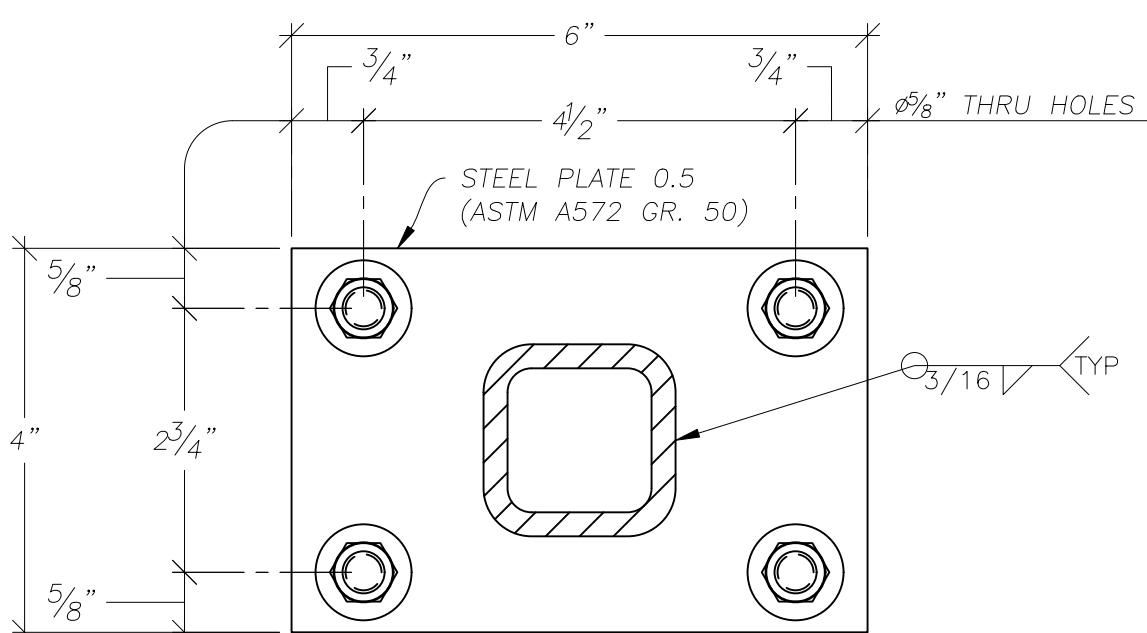
779 N. KATHLEEN LN. UNIT A
ORANGE, CA 92867
INFO@MISSIONSTRUCTURE.COM
510.593.5022

ISSUED FOR REV DATE
1st Submission 0 1/15/26

SEALS AND SIGNATURES



SHANNON LEIGH
STRATEGIC PLACEMAKING


1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

PROJECT INFORMATION
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

PROJECT NUMBER
DRAWING TITLE
PID.01 Elevation
DRAWING NUMBER
SGN3.1

MISSION STRUCTURE ENGINEERING	ISSUED FOR 1st Submission	REV 0	DATE 1/15/26	SEALS AND SIGNATURES MICHAEL CLARK BENNETT LICENSED PROFESSIONAL ENGINEER C.90708 STATE OF CALIFORNIA	CLIENT INFORMATION SHANNON LEIGH STRATEGIC PLACEMAKING 1455 Hays Street San Leandro, CA 94577 510.969.7870 info@shannonleigh.net	PROJECT INFORMATION Las Positas College 3000 Campus Hill Drive Livermore, CA 94551	PROJECT NUMBER
779 N. KATHLEEN LN. UNIT A ORANGE, CA 92867 INFO@MISSIONSTRUCTURE.COM 510.593.5022							DRAWING TITLE PID.01 Section
							DRAWING NUMBER SGN3.2

NOTE: MAY USE TRIANGULAR
STIFFENER/GUSSET FOR
IMPROVED FIT UP

A BASEPLATE TYPE 2

SCALE: 6"=1'

NOTE: APPLY HEAVY EPOXY
PRIMER TO ALL SURFACES OF
BASEPLATES

ISSUED FOR REV DATE
1st Submission 0 1/15/26

SEALS AND SIGNATURES

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

PROJECT INFORMATION
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

PROJECT NUMBER

DRAWING TITLE

PID.01
Details

DRAWING NUMBER

SGN3.3

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	1 / 5
Section	Freestanding PID.01			Job No.

Freestanding Monument Sign

Project Location:
3000 Campus Hill Drive
Livermore, CA 94551

for

Shannon-Leigh Associates, LLC
1455 Hays Street
San Leandro, CA 94577

Scope of design:

Design of freestanding monument sign anchorage & foundation. Design includes load analysis, base plate/anchor bolt design & footing design. Design Criteria based on geotechnical report by Ninyo & Moore dated November 22, 2023.

Current Codes Which Shall Apply (As applicable to project):

CBC 2025, ASCE 7-22, AISC 360-22, ACI 318-19, AA ADM1 2020,

Dead Load

Total Sign Weight:

$$DL = \text{Total Weight} = 107.906 \text{ lbf}$$

Alum. Cabinet Weight:

$$DL_{\text{cab}} = \text{Weight.F14} = 65.406 \text{ lbf}$$

Seismic Load (Full Sign Mass)

Seismic Loads

Seismic Loads of Non-Building Structures

ASCE 7-16 Chapter 15

Seismic Base Shear:

$$V_B = C_s * W_p$$

$$R = 3$$

$$SDS = 1.36$$

$$I = 1.25$$

$$W_p = 107.906 \text{ lbf}$$

Seismic Response Coefficient:

$$C_s = \frac{SDS}{R} = 0.567$$

Seismic Base Shear:

$$V_B = C_s * W_p = 61.147 \text{ lbf}$$

Overstrength Factor, Ω (where applicable): OS = 1.75

Load Distribution

Per ASCE Chapter 29

Top of Sign Height:

$$h = s = 5.25 \text{ ft}$$

Cabinet Height:

$$h_c = \text{Weight.C2} = 4.25 \text{ ft}$$

Pedestal Height:

$$h_p = 1 \text{ ft}$$

Sign Height:

$$s = h_c + h_p = 5.25 \text{ ft}$$

Sign Width (Breadth):

$$B = \text{Weight.E2} = 2.5 \text{ ft}$$

Number of Posts:

$$n_p = 1$$

Gross Sign Area:

$$A_g = s * B = 13.125 \text{ ft}^2$$

Tributary Area (single post):

$$A_n = A_g = 13.125 \text{ ft}^2$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	2 / 5
Section	Freestanding PID.01			Job No.

Moment Arm (@ baseplate):

$$arm_1 = 1.05 * \left(\frac{h_c}{2} \right) = 2.231 \text{ ft}$$

Moment Arm (@ top of ftg.):

$$arm_T = 1.05 * \left(\frac{s}{2} \right) + 0.5 \text{ ft} = 3.256 \text{ ft}$$

Wind Pressure:

$$p_w = 25 \text{ psf}$$

Wind Load Section 1:

$$W_{11} = p_w * A_n = 328.125 \text{ lbf}$$

Wind Moment Section 1:

$$M_{w1} = W_{11} * arm_1 = 732.1 \text{ lbf * ft} \quad (\text{Wind controls acting on sign face})$$

Wind Torsion:

$$T_w = 0.2 * B * W_{11} = 164.063 \text{ ft * lbf}$$

Seismic Load on Section 1 (alum. cab.):

$$EQ_{s1} = EQ2.C_s * DL = 61.147 \text{ lbf}$$

Seismic Load Section 1 w/ Over strength:

$$EQ_{s1os} = EQ_{s1} * EQ2.OS = 107.007 \text{ lbf}$$

EQ Lateral Shear Force @ baseplate:

$$V_{1eq} = EQ_{s1} = 61.147 \text{ lbf}$$

EQ Lateral Force Moment:

$$M_{1eq} = V_{1eq} * arm_1 = 136.434 \text{ lbf * ft}$$

EQ Lateral Force w/ OS:

$$V_{1eqos} = EQ_{s1os} = 107.007 \text{ lbf}$$

EQ Lateral Force Moment w/OS:

$$M_{1eqos} = V_{1eqos} * arm_1 = 238.759 \text{ lbf * ft}$$

LRFD Load Combinations (as applicable-anchorage)

LC: 0.9 DL + 1.0 W

Dead Load:

$$DL_{min} = \frac{0.9 * (DL_{cab})}{n_p} = 58.866 \text{ lbf}$$

Shear Wind:

$$V_{1w1} = W_{11} = 328.125 \text{ lbf}$$

Moment Wind:

$$M_{1w1} = V_{1w1} * arm_1 = 732.129 \text{ lbf * ft}$$

LC: 1.2 DL + 1.0 W

$$DL_{max} = \frac{1.2 * (DL_{cab})}{n_p} = 78.488 \text{ lbf}$$

Shear Wind:

$$V_{1w2} = W_{11} = 328.125 \text{ lbf}$$

Moment Wind:

$$M_{1w2} = V_{1w2} * arm_1 = 732.129 \text{ lbf * ft}$$

LC: 0.9 DL - 1.0 E_v + E_{mh}

$$DL_{eqmin} = \frac{0.9 * (DL_{cab})}{n_p} = 58.866 \text{ lbf}$$

Vertical Seismic:

$$E_{v1} = \frac{-0.2 * EQ2.SDS * (DL_{cab})}{n_p} = -17.791 \text{ lbf}$$

$$V_{1eq1} = \frac{EQ_{s1os}}{n_p} = 107.007 \text{ lbf}$$

$$M_{1eq1} = \left(\frac{EQ_{s1os}}{n_p} \right) * arm_1 = 238.759 \text{ lbf * ft}$$

LC: 1.2 DL + 1.0 E_v + E_{mh}

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	3 / 5
Section	Freestanding PID.01			Job No.

Dead Load:

$$DL_{1eqmax} = \frac{1.2 * (DL_{cab})}{n_p} = 78.488 \text{ lbf}$$

Vertical Seismic:

$$E_{v2} = \frac{0.2 * EQ2.SDS * (DL_{cab})}{n_p} = 17.791 \text{ lbf}$$

Shear EQ:

$$V_{eq2} = \frac{EQ_{s1os}}{n_p} = 107.007 \text{ lbf}$$

Moment EQ:

$$M_{eq2} = \frac{EQ_{s1os} * arm_1}{n_p} = 238.759 \text{ lbf * ft}$$

ASD Load Combinations

(Note: Omit axial loads on post-no restoring moment weld design)

LC: DL + 0.6 W

LC: DL + 0.7 (E_v + E_{mh})

Convert to ASD/service level loads

Vertical Load, ASD:

$$DL_{S1} = DL = 107.906 \text{ lbf}$$

Wind Pressure, ASD:

$$p_{wasd} = p_w * 0.6 = 15 \text{ psf}$$

Wind Load, ASD:

$$W_{lasd} = p_{wasd} * A_n = 196.875 \text{ lbf}$$

Wind Force Moment, ASD:

$$M_{wasd} = arm_1 * W_{lasd} = 439.277 \text{ ft * lbf}$$

Wind Torsion, ASD:

$$T_{asd} = T_w * 0.6 = 98.438 \text{ ft * lbf}$$

Max. Vertical Load, ASD:

$$DL_{eqasd} = \frac{DL_{S1} + 0.7 * 0.2 * EQ2.SDS * DL_{S1}}{n_p} = 128.452 \text{ lbf}$$

Seismic Load, ASD:

$$EQ_{asd} = \frac{EQ2.V_B * 0.7}{n_p} = 42.803 \text{ lbf}$$

Seismic Load w/ OS, ASD:

$$EQ_{osasd} = EQ_{asd} * EQ2.OS = 74.905 \text{ lbf}$$

Seismic Force Moment, ASD:

$$M_{eqasd} = arm_1 * EQ_{asd} = 95.504 \text{ ft * lbf}$$

Seismic Force Moment w/ OS, ASD:

$$M_{eqasd} = EQ_{osasd} * arm_1 = 167.132 \text{ lbf * ft}$$

Weld Connection From Post to Base Plate

Tube Depth:

$$d_{tube} = 2 \text{ in}$$

Tube Breadth:

$$b_{tube} = 2 \text{ in}$$

Tube Wall Thickness:

$$t_{tube} = 0.188 \text{ in}$$

Weld Line Section Modulus:

$$S_w = d_{tube} * b_{tube} + \frac{d_{tube}^2}{3} = 5.333 \text{ in}^2$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	4 / 5
Section	Freestanding PID.01			Job No.

Weld Line Area:

$$A_w = d_{tube} * 2 + b_{tube} * 2 = 8 \text{ in}$$

Fillet Weld Design (AISC 360 Section J2.4 or ADM J.2)

Weld to resist loads V & M.

Material = "Steel"

Weld Group Configuration:

Type = "sq 2x2x0.188"

Input Weld Shear Load:

$$V = W_{lasd} = 196.875 \text{ lbf}$$

Input Weld Moment Load:

$$M = M_{wasd} = 439.277 \text{ ft * lbf}$$

Weld Line Section Modulus (bending):

$$S_w = \text{Report1}.S_w = 5.333 \text{ in}^2$$

Weld Line Section Modulus (shear):

$$A_w = \text{Report1}.A_w = 8 \text{ in}$$

Required Strength:

$$R = \sqrt{\left(\frac{V}{A_w}\right)^2 + \left(\frac{M}{S_w}\right)^2} = 988.7 \frac{\text{lb}}{\text{in}}$$

Weld Electrode Tensile Strength:

$$f_u = 70 \text{ ksi}$$

Weld Factor of Safety:

$$\Omega_w = 2$$

$$R_n = \begin{cases} \left(\frac{0.707 * f_u * 0.6 * \left(\frac{1 \text{ in}}{16} \right)}{\Omega_w} \right) & \text{if Material == "Steel"} \\ \left(\frac{0.707 * 0.85 * f_u * 0.6 * \left(\frac{1 \text{ in}}{16} \right)}{\Omega_w} \right) & \text{otherwise} \end{cases} = 927.9 \frac{\text{lb}}{\text{in}}$$

Strength of Weld per inch:

$$a_{req} = \text{RoundUp}\left(\frac{R}{R_n}\right) = 2/16" \text{ Weld Leg Size}$$

Foundation Loads

Spread Footing Foundation

Nominal loads for allowable capacities per geotechnical report. Seismic Loads to have omega/overstrength applied (cantilever foundation system). Design provided in design worksheet to follow.

Width of Footing:

$$W_{ftg} = 3.5 \text{ ft}$$

Length of Footing:

$$l_{ftg} = 3.5 \text{ ft}$$

Width of Pedestal:

$$W_{ped} = 2 \text{ ft}$$

Length of Pedestal:

$$l_{ped} = 3.5 \text{ ft}$$

Height of Pedestal:

$$H_{ped} = 18 \text{ in}$$

Weight of Concrete Pedestal:

$$W_{ped} = W_{ped} * l_{ped} * H_{ped} * 150 \text{ pcf} = 1575 \text{ lbf}$$

LC: 0.9 DL + W

(nominal values for foundation software shown below)

Vertical Force:

$$A_1 = 0.9 * (DL + W_{ped}) = 1514.616 \text{ lbf}$$

Horizontal Force:

$$P_1 = (B * s * p_w) = 328.125 \text{ lbf}$$

Moment:

$$M_1 = P_1 * arm_T = 1068.457 \text{ lbf * ft}$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	5 / 5
Section	Freestanding PID.01			Job No.

LC: $0.9 \text{ DL} + (E_v + E_{mh})$

(nominal values for foundation software shown below)

DL Vertical Force:

$$A_2 = 0.9 * (\text{DL} + \text{Wt}_{\text{ped}}) = 1514.616 \text{ lbf}$$

EQ Vertical Force:

$$A_3 = (-0.2 * \text{EQ2.SDS} * (\text{DL} + \text{Wt}_{\text{ped}})) = -457.751 \text{ lbf}$$

Horizontal Forces:

Sign Cabinet:

$$P_2 = \text{EQ2.V}_B * \text{EQ2.OS} = 107.007 \text{ lbf}$$

Sign Cabinet moment arm:

$$a_2 = \text{arm}_T = 3.256 \text{ ft}$$

Sign Cabinet moment:

$$M_2 = P_2 * a_2 = 348.442 \text{ lbf * ft}$$

Combined EQ Axial:

$$A_{\text{eq}} = A_2 + A_3 = 1056.865 \text{ lbf}$$

Combined EQ Shear:

$$V_{\text{eq}} = P_2 = 107.007 \text{ lbf}$$

Combined EQ Moment:

$$M_{\text{eq}} = M_2 = 348.442 \text{ lbf * ft}$$

Weight Takeoff

Component	Height: 4.25 ft		Width: 2.5 ft		Weight
	Unit Wt	Unit Qty	Wt	Qty	
Skin	2 psf	10.6 ft ²	21.25 lbf	2	42.5 lbf
Post	10 plf	4.25 ft	42.5 lbf	1	42.5 lbf
Channel Extrusion	1.5 plf	13.5 ft	20.25 lbf	1	20.25 lbf
Misc Framing/Stiffeners	0.25 psf	10.6 ft ²	2.656 lbf	1	2.656 lbf

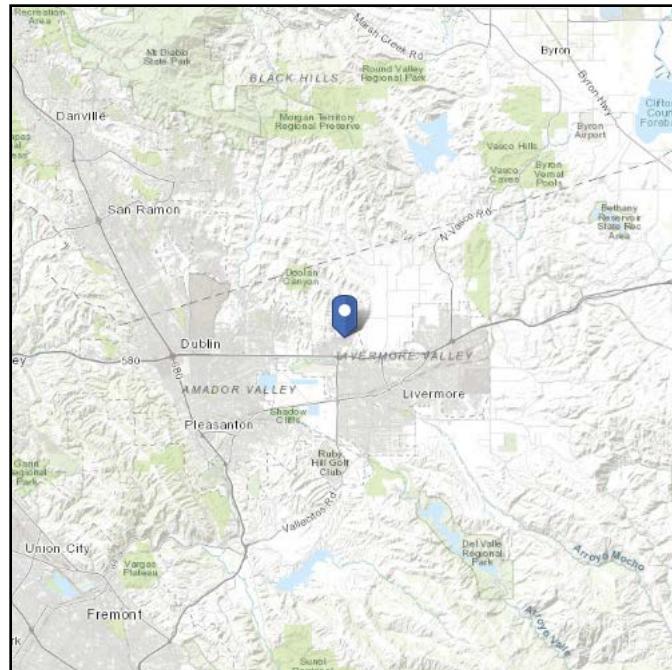
Cabinet Wt.: 65.41 lbf

Total: 107.9 lbf

ASCE Hazards Report

Address:

Las Positas College - 3000
Campus Hill Drive
Livermore,


Standard: ASCE/SEI 7-22

Risk Category: III

Soil Class: D - Stiff Soil

Latitude: 37.710873

Longitude: -121.80058

Elevation: 480.38484203241944 ft
(NAVD 88)

Wind

Results:

Wind Speed	99 Vmph
10-year MRI	64 Vmph
25-year MRI	70 Vmph
50-year MRI	75 Vmph
100-year MRI	79 Vmph
300-year MRI	87 Vmph
700-year MRI	93 Vmph
1,700-year MRI	99 Vmph
3,000-year MRI	103 Vmph
10,000-year MRI	113 Vmph
100,000-year MRI	129 Vmph
1,000,000-year MRI	147 Vmph

Data Source:

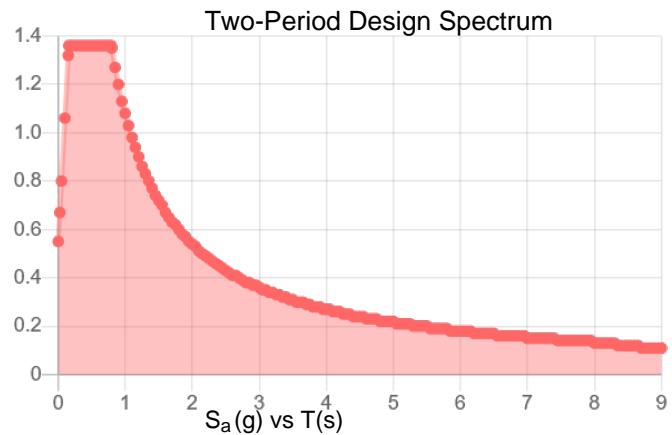
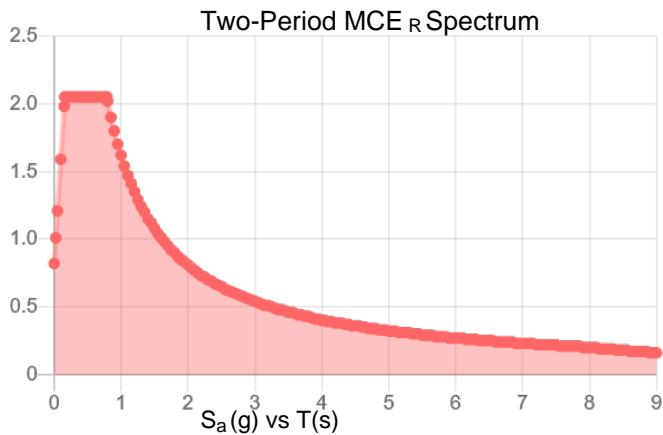
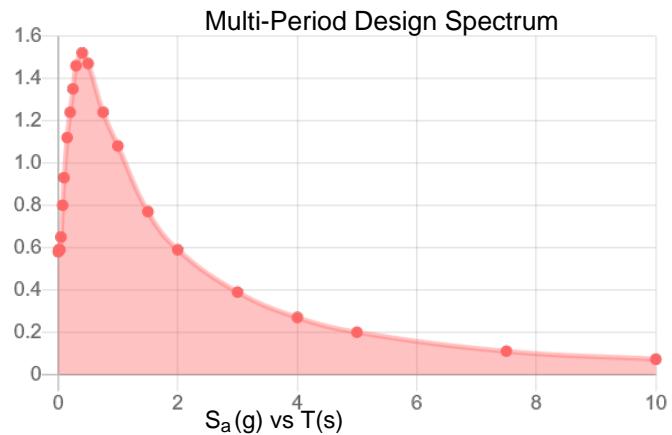
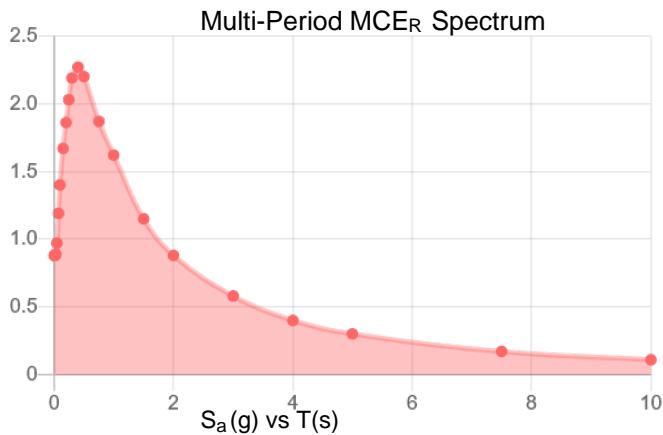
ASCE/SEI 7-22, Fig. 26.5-1C and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed:

Mon Nov 24 2025

AMERICAN SOCIETY OF CIVIL ENGINEERS

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-22 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years). Values for 10-year MRI, 25-year MRI, 50-year MRI and 100-year MRI are Service Level wind speeds, all other wind speeds are Ultimate wind speeds.





Site is not in a hurricane-prone region as defined in ASCE/SEI 7-22 Section 26.2.

Site Soil Class: D - Stiff Soil

Results:

PGA _M :	0.73	T _L :	8
S _{MS} :	2.05	S _S :	2.13
S _{M1} :	1.62	S ₁ :	0.81
S _{DS} :	1.36	V _{S30} :	260
S _{D1} :	1.08		

Seismic Design Category: E

MCE_R Vertical Response Spectrum
Vertical ground motion data has not yet been made available by USGS.

Design Vertical Response Spectrum
Vertical ground motion data has not yet been made available by USGS.

Data Accessed: **Mon Nov 24 2025**

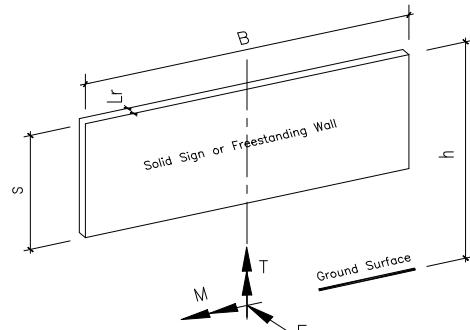
Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-22 and ASCE/SEI 7-22 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-22 Ch. 21 are available from USGS.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.



Wind Analysis for Freestanding Wall & Sign Based on ASCE 7-22

Monument Sign Wind Pressure

INPUT DATA

Exposure category (B, C or D)	=	C
Importance factor, 1.0 only, (Table 1.5-2)	I _w =	1.00
Basic wind speed (ASCE 7 26.5.1)	V =	99 mph, (159.32 kph)
Topographic factor (26.8 & Table 26.8-1)	K _{zt} =	1 Flat
Height of top	h =	11 ft, (3.35 m)
Vertical dimension (for wall, s = h)	s =	11 ft, (3.35 m)
Horizontal dimension	B =	4 ft, (1.22 m)
Dimension of return corner	L _r =	0 ft, (0.00 m)

DESIGN SUMMARY

Max horizontal wind pressure	p =	25 psf, (1177 N/m ²)
Max total horizontal force at centroid of base	F =	1.08 kips, (5 kN)
Max bending moment at centroid of base	M =	6.54 ft-kips, (9 kN-m)
Max torsion at centroid of base	T =	0.87 ft-kips, (1 kN-m)

ANALYSIS

Velocity pressure

$$q_h K_d = (0.00256 K_z K_{zt} K_e V^2) K_d = 18.13 \text{ psf}$$

where: q_h = velocity pressure at mean roof height, h . (Eq. 26.10-1 page 277), $K_e = 1.00$, (Tab. 26.9-1 page 275)

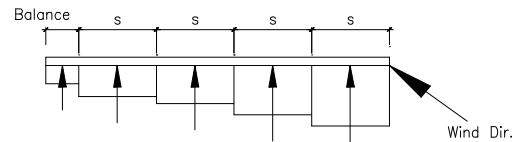
K_z = velocity pressure exposure coefficient evaluated at height, h , (Tab. 26.10-1, pg 277) = 0.85

K_d = wind directionality factor. (Tab. 26.6-1, page 274) = 0.85

h = height of top = 11.00 ft

Wind Force Case A: resultant force through the geometric center (Sec. 29.3.1)

p = $q_h K_d G C_N$	=	25 psf
F = p A _s	=	1.08 kips
M = F (h - 0.5s) for sign, F (0.55h) for wall	=	6.54 ft-kips
T =	=	0.00 ft-kips
where: G = gust effect factor. (Sec. 26.9)	=	0.85
C _f = net force coefficient. (Fig. 29.3-1, page 301)	=	1.60
A _s = B s	=	44.0 ft ²


Wind Force Case B: resultant force at 0.2 B offset of the geometric center (Sec. 29.3.1)

p = Case A	=	25 psf
F = Case A	=	1.08 kips
M = Case A	=	6.54 ft-kips
T = 0.2 F B	=	0.87 ft-kips

Wind Force Case C: resultant force different at each region (Sec. 29.4.1)

p = $q_h G C_f$		
F = $\sum p A_s$		
M = $\sum [F (h - 0.5s) \text{ for sign, } F (0.55h) \text{ for wall}]$		
T = $\sum T_s$		

Distance	C _f	P _i	A _{si}	F _i	M _i	T _i
(ft)	(Fig. 29.3-1)	(psf)	(ft ²)	(kips)	(ft-kips)	(ft-kips)
4.0	1.800	28	44	1.22	7.38	0.00
Σ						
4.0	1.200	18	0	0.00	0.00	0.00
Σ				1.22	7.38	0.00

<== Case C may not be considered, footnote 3 of Fig. 6-20

PROJECT : Las Positas
CLIENT :
JOB NO. :

PAGE :
DESIGN BY :
REVIEW BY :

HSS (Tube, Pipe) Member Design with Torsional Loading Based on AISC 360-10/16

PID.01 Post DL+W

INPUT DATA & DESIGN SUMMARY

MEMBER SHAPE (Tube or Pipe) & SIZE

HSS2X2X3/16

<== Tube

STEEL YIELD STRESS

$F_y = 46$ ksi, (317 MPa)

TORSIONAL FORCE

$T_r = 0.099$ ft-kips, (0 kN-m), ASD

AXIAL COMPRESSION FORCE

$P_r = 0.107$ kips, (0 kN), ASD

STRONG AXIS EFFECTIVE LENGTH

$kL_x = 8$ ft, (2.44 m)

WEAK AXIS EFFECTIVE LENGTH

$kL_y = 8$ ft, (2.44 m)

STRONG AXIS BENDING MOMENT

$M_{rx} = 0.44$ ft-kips, (1 kN-m), ASD

STRONG AXIS BENDING UNBRACED LENGTH

$L_b = 4$ ft, (1.22 m), (AISC 360 F2.2.c)

STRONG DIRECTION SHEAR LOAD, ASD

$V_{strong} = 0.197$ kips, (1 kN)

WEAK AXIS BENDING MOMENT

$M_{ry} = 0$ ft-kips, (0 kN-m), ASD

WEAK DIRECTION SHEAR LOAD, ASD

$V_{weak} = 0$ kips, (0 kN)

THE DESIGN IS ADEQUATE.

ANALYSIS

CHECK TORSIONAL CAPACITY (AISC 360 H3.1)

$$T_c = \frac{1}{\Omega_T} T_n = \frac{1}{\Omega_T} \begin{cases} \left[0.6F_y, \text{ for } \frac{h}{t} \leq 2.45\sqrt{\frac{E}{F_y}} \right] \\ \left[2(B-t)(H-t) - 4.5(4-\pi)t^3 \right] \left[0.6F_y 2.45\sqrt{\frac{E}{F_y}} \frac{t}{h}, \text{ for } \frac{h}{t} \leq 3.07\sqrt{\frac{E}{F_y}} \right], \text{ for HSS Tube} \\ \left[0.458 \frac{E\pi^2}{(h/t)^2}, \text{ for } \frac{h}{t} \leq 260 \right] \end{cases} = 1.7 \text{ ft-kips}$$

$$\frac{\pi(D-t)^2 t}{2} \text{ Max} \left[\frac{1.23E}{\sqrt{D} \left(\frac{D}{t} \right)^{(5/4)}}, \frac{0.60E}{\left(\frac{D}{t} \right)^{(3/2)}} \right], \text{ for HSS Pipe} > T_r \text{ [Satisfactory]}$$

Where $B = 2.00$ $H = 2.00$ $h = 1.44$ $t = 0.19$ $D = 29000$ $E = 29000$

$\Omega_T = 1.67$, ASD

CHECK COMBINED COMPRESSION AND BENDING CAPACITY (AISC 360 H1)

$$\begin{cases} \frac{P_r}{P_c} + 8 \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right), \text{ for } \frac{P_r}{P_c} \geq 0.2 \\ \frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right), \text{ for } \frac{P_r}{P_c} < 0.2 \end{cases} = 0.25 < 1.3 \text{ [Satisfactory]}$$

(2021 IBC, 1605.3.2)

Where $P_c = P_n / \Omega_c = 17 / 1.67 = 10.45$ kips, (AISC 360 Chapter E)

> P_r [Satisfactory]

$M_{cx} = M_n / \Omega_b = 3.06 / 1.67 = 1.83$ ft-kips, (AISC 360 Chapter F)

> M_{rx} [Satisfactory]

$M_{cy} = M_n / \Omega_b = 3.06 / 1.67 = 1.83$ ft-kips, (AISC 360 Chapter F)

> M_{ry} [Satisfactory]

CHECK SHEAR CAPACITY (AISC 360 G2)

$V_{n,strong} / \Omega_v = 13.8 / 1.67 = 8.3$ kips > $V_{strong} = 0.2$ kips [Satisfactory]

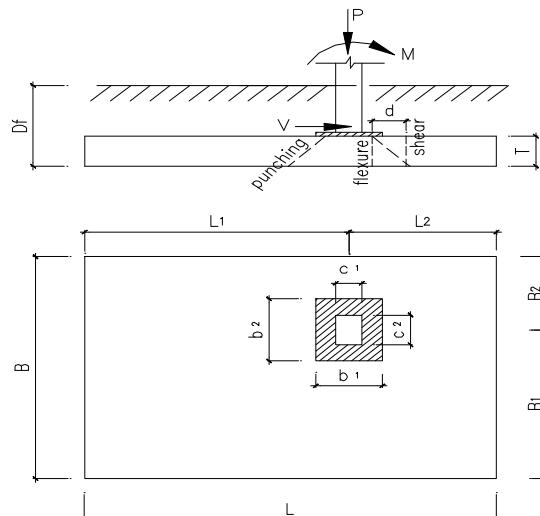
$V_{n,weak} / \Omega_v = 13.8 / 1.67 = 8.3$ kips > $V_{weak} = 0.0$ kips [Satisfactory]

CHECK COMBINED TORSION, SHEAR, COMPRESSION, AND BENDING CAPACITY (AISC 360 H3.2)

$$\begin{cases} \frac{P_r}{P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) + \left[\text{Max} \left(\frac{V_{strong}}{V_{c,strong}}, \frac{V_{weak}}{V_{c,weak}} \right) + \frac{T_r}{T_c} \right]^2, \text{ for } \frac{T_r}{T_c} > 0.2 \\ \text{Torsion Neglected, for } \frac{T_r}{T_c} \leq 0.2 \end{cases} = 0.0 < 1.3 \text{ [Satisfactory]}$$

(2021 IBC, 1605.3.2)

Eccentric Footing Design Based on ACI 318-19


PID.01 0.9DL+W Spread Ftg.

INPUT DATA

COLUMN WIDTH	c_1	=	2	in
COLUMN DEPTH	c_2	=	2	in
BASE PLATE WIDTH	b_1	=	5	in
BASE PLATE DEPTH	b_2	=	5	in
FOOTING CONCRETE STRENGTH	f_c'	=	2.5	ksi
REBAR YIELD STRESS	f_y	=	60	ksi
AXIAL DEAD LOAD	P_{DL}	=	1.514	k
AXIAL LIVE LOAD	P_{LL}	=	0	k
LATERAL LOAD (0=WIND, 1=SEISMIC)		=	0	Wind, SD
WIND AXIAL LOAD	P_{LAT}	=	0	k, SD
WIND MOMENT LOAD	M_{LAT}	=	1.069	ft-k, SD
WIND SHEAR LOAD	V_{LAT}	=	0.329	k, SD
SURCHARGE	q_s	=	0	ksf
SOIL WEIGHT	w_s	=	0.11	kcf
FOOTING EMBEDMENT DEPTH	D_f	=	1.5	ft
FOOTING THICKNESS	T	=	12	in
ALLOWABLE SOIL PRESSURE	Q_a	=	2	ksf
FOOTING WIDTH	B_1	=	1.75	ft
	B_2	=	1.75	ft
FOOTING LENGTH	L_1	=	1.75	ft
	L_2	=	1.75	ft
REINFORCING SIZE		#	4	

DESIGN SUMMARY

FOOTING WIDTH	B =	3.50	ft
FOOTING LENGTH	L =	3.50	ft
FOOTING THICKNESS	T =	12	in
LONGITUDINAL REINF., TOP	1 #4		
LONGITUDINAL REINF., BOT.	3 #4 @ 18 in o.c.		
TRANSVERSE REINF., BOT.	3 #4 @ 18 in o.c.		

THE FOOTING DESIGN IS ADEQUATE.

ANALYSIS

DESIGN LOADS AT TOP OF FOOTING (IBC 1605.2 & ACI 318 5.3)

CASE 1:	DL + LL	P	=	2	kips	1.2 DL + 1.6 LL	P _u	=	2	kips
		M	=	0	ft-kips		M _u	=	0	ft-kips
		e	=	0.0	ft, fr cl ftg		e _u	=	0.0	ft, fr cl ftg
CASE 2:	DL + LL + 0.6(1.3) W	P	=	2	kips	1.2 DL + LL + 1.0 W	P _u	=	2	kips
		M	=	1	ft-kips		M _u	=	1	ft-kips
		V	=	0	kips		V _u	=	0	kips
CASE 3:	DL + LL + 0.6(0.65) W	P	=	2	kips	0.9 DL + 1.0 W	P _u	=	1	kips
		M	=	1	ft-kips		M _u	=	1	ft-kips
		V	=	0	kips		V _u	=	0	kips
		e	=	0.4	ft, fr cl ftg		e _u	=	0.8	ft, fr cl ftg

CHECK OVERTURNING FACTOR (2021 IBC 1605.2.1, 1808.3.1, & ASCE 7-22 12.13.4)

$M_R / M_O = 5.0 > F = 1.0 / 0.9 = 1.11$ [Satisfactory]

$$\text{Where } M_O = M_{LAT} + V_{LAT} T - P_{LAT} L_2 =$$

$$P_{ftq} = (0.15 \text{ kcf}) T B L = 1.84 \text{ k, footing weight}$$

$$P_{soil} = w_s (D_f - T) B L = 0.67 \text{ k, soil weight}$$

$$M_R = P_{DL}L_2 + 0.5 (P_{fg} + P_{soil}) L = \quad \quad \quad 7 \quad \quad \quad \text{k-ft}$$

FOR REVERSED LATERAL LOADS,

$M_R / M_O = 4.5 > F = 1.0 / 0.9$ [Satisfactory]

Where $M_O = M_{LAT} + V_{LAT} D_f - P_{LAT} L_1$ = 2 k-ft

$$M_R = P_{DL}L_1 + 0.5 (P_{ftq} + P_{soil}) L = \quad \quad \quad 7 \quad \quad \quad \text{k-ft}$$

CHECK SLIDING (2021 IBC 1807.2.3)

1.5 (V_{Lat, ASD}) = 0.2961 kips < $\mu \Sigma W$ = 1.34 kips [Satisfactory]
 Where μ = 0.4

CHECK SOIL BEARING CAPACITY (ACI 318 13.3.1.1)

Service Loads	CASE 1	CASE 2	CASE 3	
P	1.5	1.5	1.5	
e	0.0	0.8	0.5	ft (from center of footing)
q _s B L	0.0	0	0.0	k, (surcharge load)
(0.15-w _s)T B L	0.5	0.5	0.3	k, (footing increased)
Σ P	2.0	2.0	1.8	k
e _L	0.0 < L/6	0.6 > L/6	0.4 < L/6	ft
e _B	0.0 < B/6	0.0 < B/6	0.0 < B/6	ft
q _L	0.6	1.2	0.9	k / ft
q _{max}	0.2	0.3	0.3	ksf
q _{allow}	2.0	2.7	2.7	ksf

Where

$$q_L = \begin{cases} \frac{(\Sigma P) \left(1 + \frac{6e_L}{L}\right)}{L}, & \text{for } e_L \leq \frac{L}{6} \\ \frac{2(\Sigma P)}{3(0.5L - e_L)}, & \text{for } e_L > \frac{L}{6} \end{cases}$$

$$q_{MAX} = \begin{cases} \frac{q_L \left(1 + \frac{6e_B}{B}\right)}{B}, & \text{for } e_B \leq \frac{B}{6} \\ \frac{2q_L}{3(0.5B - e_B)}, & \text{for } e_B > \frac{B}{6} \end{cases}$$

[Satisfactory]

DESIGN FLEXURE & CHECK FLEXURE SHEAR


(ACI 318 13, 21, & 22)

$$q_{u,MAX} = \begin{cases} \frac{(\Sigma P_u) \left(1 + \frac{6e_u}{L}\right)}{BL}, & \text{for } e_u \leq \frac{L}{6} \\ \frac{2(\Sigma P_u)}{3B(0.5L - e_u)}, & \text{for } e_u > \frac{L}{6} \end{cases}$$

$$\rho_{MAX} = \frac{0.85 \beta_{1f} f_c}{f_y} \frac{\varepsilon_u}{\varepsilon_u + \varepsilon_t}$$

$$\rho = \frac{0.85 f_c \left(1 - \sqrt{1 - \frac{M_u}{0.383bd^2 f_c}}\right)}{f_y}$$

$$\rho_{MIN} = MIN \left(0.0018 \frac{T}{d}, \frac{4}{3} \rho \right)$$

FACTORED SOIL PRESSURE

Factored Loads	CASE 1	CASE 2	CASE 3	
P _u	1.8	1.8	1.4	k
e _u	0.0	0.8	1.0	ft
γ q _s B L	0.0	0.0	0.0	k, (factored surcharge load)
γ[0.15T + w _s (D _f - T)]BL	3.0	3.0	2.3	k, (factored footing & backfill loads)
Σ P _u	4.8	4.8	3.6	k
e _u	0.0 < L/6	0.3 < L/6	0.4 < L/6	ft
q _{u, max}	0.394	0.590	0.491	ksf

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 1

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.44	0.88	1.31	1.60	1.90	2.19	2.63	3.06	3.50
M _{u,col} (ft-k)	0	0	0	0	0	-0.3	-0.8	-1.6	-2.4	-3.2
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	1.8	1.8	1.8	1.8	1.8
P _{u,surch} (klf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,ftg & fill} (klf)	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
M _{u,ftg & fill} (ft-k)	0	-0.1	-0.3	-0.7	-1.1	-1.5	-2.1	-3.0	-4.0	-5.3
V _{u,ftg & fill} (k)	0	0.4	0.8	1.1	1.4	1.6	1.9	2.3	2.6	3.0
q _{u,soil} (ksf)	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
M _{u,soil} (ft-k)	0	0.1	0.5	1.2	1.8	2.5	3.3	4.8	6.5	8.5
V _{u,soil} (k)	0	-0.6	-1.2	-1.8	-2.2	-2.6	-3.0	-3.6	-4.2	-4.8
Σ M _u (ft-k)	0	0.0	0.2	0.4	0.7	0.7	0.4	0.2	0.0	0
Σ V _u (kips)	0	-0.2	-0.5	-0.7	-0.8	0.8	0.7	0.5	0.2	0

(cont'd)

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 2

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.44	0.88	1.31	1.60	1.90	2.19	2.63	3.06	3.50
M _{u,col} (ft-k)	0	0	0	0	0	1.1	0.6	-0.2	-1.0	-1.8
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	1.8	1.8	1.8	1.8	1.8
P _{u,surch} (klf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (klf)	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
M _{u,fg & fill} (ft-k)	0	-0.1	-0.3	-0.7	-1.1	-1.5	-2.1	-3.0	-4.0	-5.3
V _{u,fg & fill} (k)	0	0.4	0.8	1.1	1.4	1.6	1.9	2.3	2.6	3.0
q _{u,soil} (ksf)	0.20	0.25	0.30	0.35	0.38	0.41	0.44	0.49	0.54	0.59
M _{u,soil} (ft-k)	0	0.1	0.3	0.7	1.2	1.7	2.3	3.6	5.1	7.1
V _{u,soil} (k)	0	-0.3	-0.8	-1.2	-1.6	-2.0	-2.5	-3.2	-4.0	-4.8
ΣM_u (ft-k)	0	0.0	0.0	0.0	0.1	1.3	0.9	0.4	0.1	0
ΣV_u (kips)	0	0.0	0.0	-0.1	-0.2	1.4	1.2	0.9	0.5	0

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 3

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.44	0.88	1.31	1.60	1.90	2.19	2.63	3.06	3.50
M _{u,col} (ft-k)	0	0	0	0	0	1.2	0.8	0.2	-0.4	-1.0
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	1.4	1.4	1.4	1.4	1.4
P _{u,surch} (klf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (klf)	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
M _{u,fg & fill} (ft-k)	0	-0.1	-0.2	-0.6	-0.8	-1.2	-1.5	-2.2	-3.0	-4.0
V _{u,fg & fill} (k)	0	0.3	0.6	0.8	1.0	1.2	1.4	1.7	2.0	2.3
q _{u,soil} (ksf)	0.10	0.15	0.20	0.25	0.28	0.31	0.34	0.39	0.44	0.49
M _{u,soil} (ft-k)	0	0.0	0.2	0.4	0.7	1.1	1.5	2.4	3.5	4.9
V _{u,soil} (k)	0	-0.2	-0.5	-0.8	-1.1	-1.4	-1.7	-2.3	-2.9	-3.6
ΣM_u (ft-k)	0	0.0	-0.1	-0.1	-0.1	1.1	0.8	0.4	0.1	0
ΣV_u (kips)	0	0.1	0.1	0.1	0.0	1.2	1.1	0.8	0.4	0

DESIGN FLEXURE

Location	M _{u,max}	d (in)	P _{min}	P _{reqD}	P _{max}	s _{max}	use	P _{provD}
Top Longitudinal	0.1	ft-k	9.75	0.0000	0.0000	no limit	1 # 4	0.0005
Bottom Longitudinal	1.3	ft-k	8.75	0.0001	0.0001	18	3 # 4 @ 18 in o.c.	0.0016
Bottom Transverse	0	ft-k / ft	8.50	0.0001	0.0000	0.0129	18	3 # 4 @ 18 in o.c.

[Satisfactory]

CHECK FLEXURE SHEAR

Direction	V _{u,max}	$\phi V_c = 2 \phi b d (f'_c)^{0.5}$	check V _u < ϕV_c
Longitudinal	1.4 k	28 k	[Satisfactory]
Transverse	0.2 k / ft	8 k / ft	[Satisfactory]

CHECK PUNCHING SHEAR (ACI 318 13.2.7.2, 22.6.4.1, 22.6.4.3, & 8.4.2.3)

$$v_{uL} (\text{psi}) = \frac{P_u - R}{AP} + \frac{0.5\gamma_v M_{ub1}}{J}$$

$$AP = 2(b_1 + b_2)d$$

$$J = \left(\frac{db_1^3}{6} \right) \left[1 + \left(\frac{d}{b_1} \right)^2 + 3 \left(\frac{b_2}{b_1} \right) \right]$$

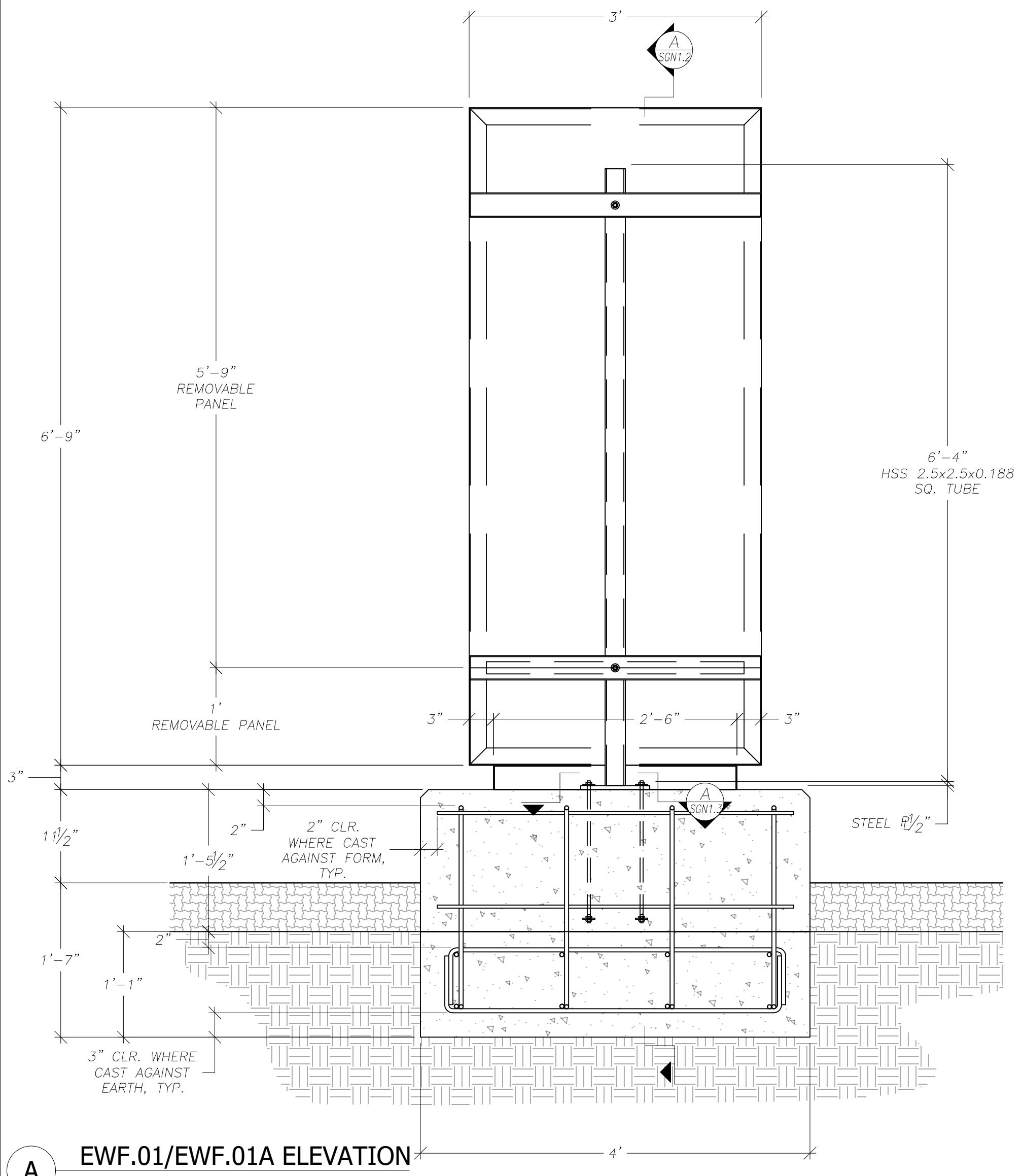
$$\gamma_v = 1 - \frac{1}{1 + \frac{2}{3} \sqrt{\frac{b_1}{b_2}}}$$

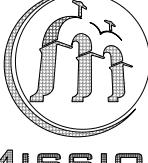
$$R = \frac{P_u b_1 b_2}{A_f}$$

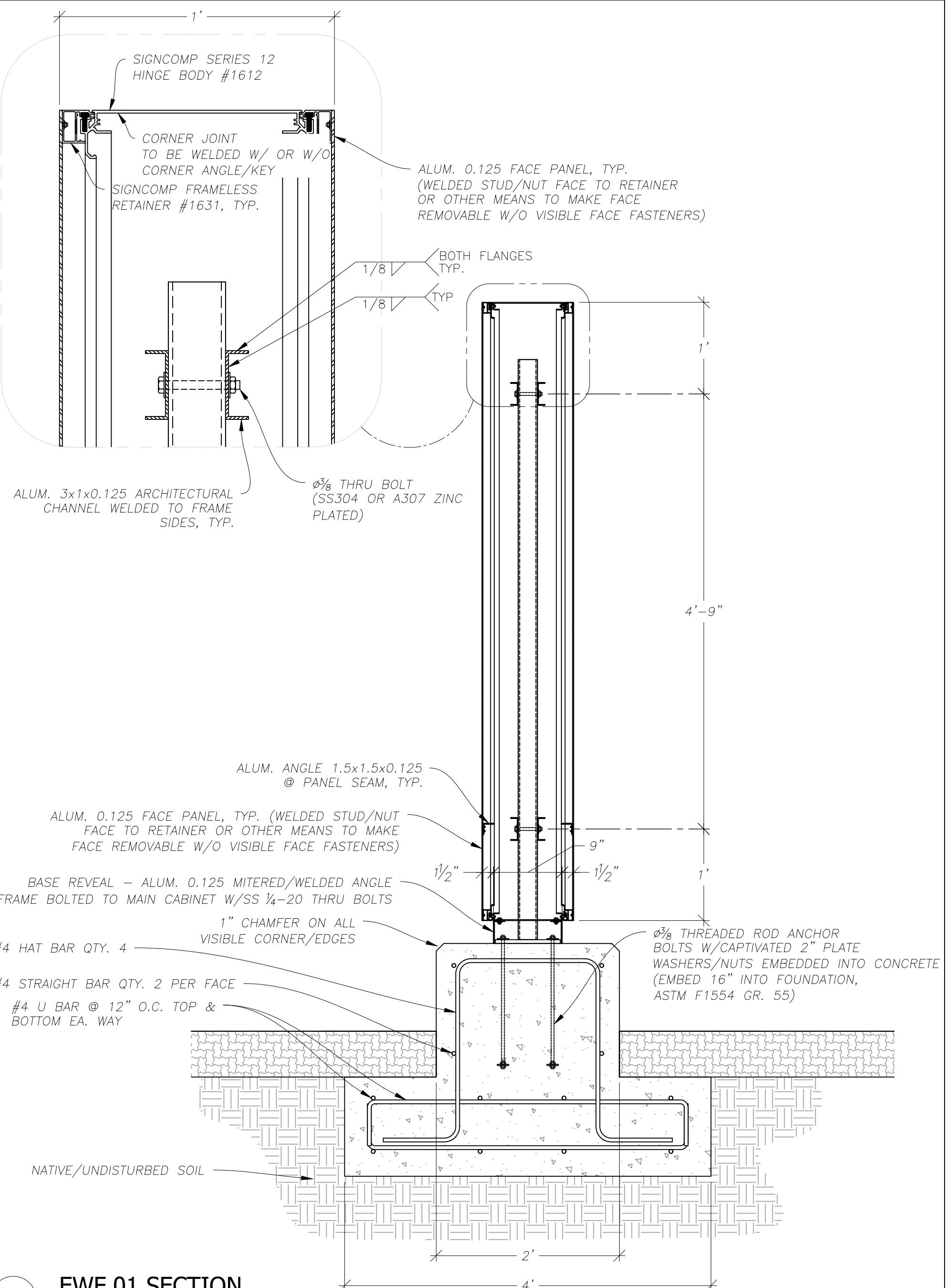
$$A_f = BL$$

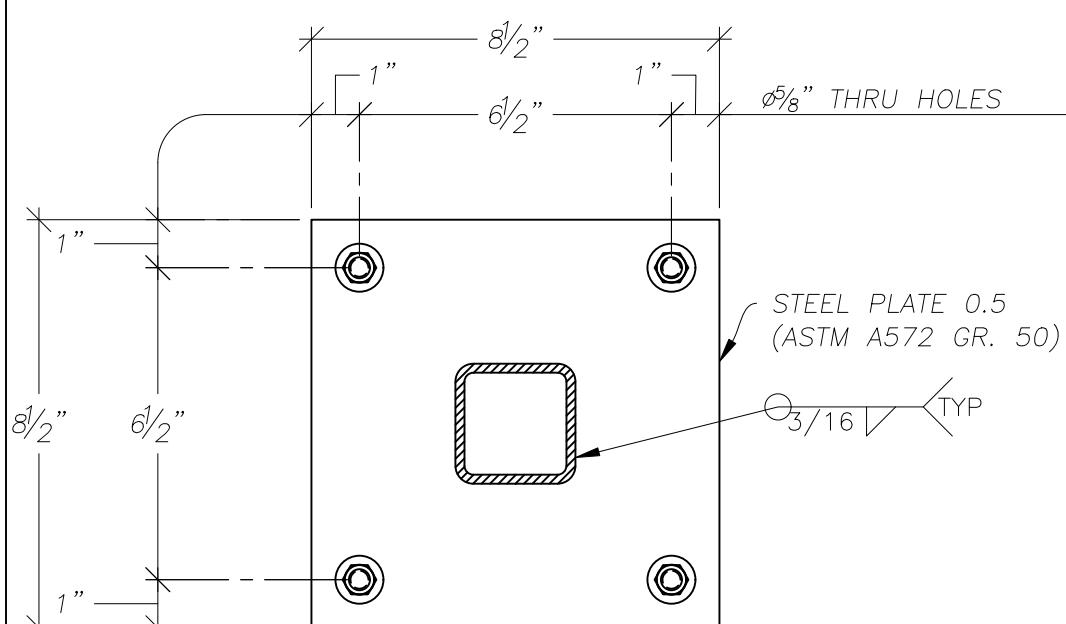
$$\phi v_c (\text{psi}) = \phi (2 + y) \sqrt{f'_c}$$

$$y = \text{MIN} \left(2, \frac{4}{\beta_c}, 40 \frac{d}{b_0} \right)$$


$$b_0 = \frac{AP}{d}, b_1 = (0.5c_1 + 0.5b_1 + d), b_2 = (0.5c_2 + 0.5b_2 + d)$$


Case	P _u	M _u	b ₁	b ₂	b ₀	γ_v	β_c	y	A _f	A _p	R	J	V _u (psi)	ϕV_c
1	1.8	0.0	12.0	12.0	0.3	0.4	1.0	2.0	12.3	2.8	0.1	0.5	4.1	150.0
2	1.8	1.1	12.0	12.0	0.3	0.4	1.0	2.0	12.3	2.8	0.1	0.5	4.1	150.0
3	1.4	1.1	12.0	12.0	0.3	0.4	1.0	2.0	12.3	2.8	0.1	0.5	3.1	150.0


[Satisfactory]


where $\phi = 0.75$, (ACI 318 21.2)

NOTE: PEDESTAL/PLINTH TO BE FORMED W/ BOARD FORM OR BOARD FORM LINER. PATTERN T.B.D.

<p>MISSION STRUCTURE ENGINEERING</p> <p>779 N. KATHLEEN LN. UNIT A ORANGE, CA 92867 INFO@MISSIONSTRUCTURE.COM 510.593.5022</p>	ISSUED FOR	REV	DATE	PROJECT INFORMATION Las Positas College 3000 Campus Hill Drive Livermore, CA 94551	PROJECT NUMBER DRAWING TITLE EWF.01/EWF.01A Elevation
	1st Submission	0	1/15/26		
<p>SEALS AND SIGNATURES</p> <p>LICENSED PROFESSIONAL ENGINEER MICHAEL CLARK BENNETT C 90708 STATE OF CALIFORNIA</p>	CLIENT INFORMATION	<p>SHANNON LEIGH STRATEGIC PLACEMAKING</p> <p>1455 Hays Street San Leandro, CA 94577 510.969.7870 info@shannonleigh.net</p>			DRAWING NUMBER SGN1.1

NOTE: MAY USE TRIANGULAR
STIFFENER/GUSSET FOR
IMPROVED FIT UP

A

BASEPLATE TYPE 1

SCALE: 3"=1'

NOTE: APPLY HEAVY EPOXY
PRIMER TO ALL SURFACES OF
BASEPLATES

ISSUED FOR REV DATE
1st Submission 0 1/15/26

SEALS AND SIGNATURES

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

PROJECT INFORMATION
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

PROJECT NUMBER
EWF.01/EWF.01A
Details
SGN1.3

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-24	1 / 5
Section	Freestanding EWF.01			Job No.

Freestanding Monument Sign

Project Location:
3000 Campus Hill Drive
Livermore, CA 94551

for

Shannon-Leigh Associates, LLC
1455 Hays Street
San Leandro, CA 94577

Scope of design:

Design of freestanding monument sign anchorage & foundation. Design includes load analysis, base plate/anchor bolt design & footing design. Design Criteria based on geotechnical report by Ninyo & Moore dated November 22, 2023.

Current Codes Which Shall Apply (As applicable to project):

CBC 2025, ASCE 7-22, AISC 360-22, ACI 318-19, AA ADM1 2020,

Dead Load

Total Sign Weight:

$$DL = \text{Total Weight} = 189.25 \text{ lbf}$$

Alum. Cabinet Weight:

$$DL_{\text{cab}} = \text{Weight.F14} = 119.25 \text{ lbf}$$

Seismic Load (Full Sign Mass)

Seismic Loads

Seismic Loads of Non-Building Structures

ASCE 7-16 Chapter 15

Seismic Base Shear:

$$V_B = C_s * W_p$$

$$R = 3$$

$$SDS = 1.36$$

$$I = 1$$

$$W_p = 189.25 \text{ lbf}$$

Seismic Response Coefficient:

$$C_s = \frac{SDS}{R} = 0.453$$

Seismic Base Shear:

$$V_B = C_s * W_p = 85.793 \text{ lbf}$$

Overstrength Factor, Ω (where applicable): OS = 1.75

Load Distribution

Per ASCE Chapter 29

Top of Sign Height:

$$h = 8 \text{ ft}$$

Cabinet Height:

$$h_c = \text{Weight.C2} = 7 \text{ ft}$$

Pedestal Height:

$$h_p = 1 \text{ ft}$$

Sign Height:

$$s = h_c + h_p = 8 \text{ ft}$$

Sign Width (Breadth):

$$B = \text{Weight.E2} = 3 \text{ ft}$$

Number of Posts:

$$n_p = 1$$

Gross Sign Area:

$$A_g = s * B = 24 \text{ ft}^2$$

Tributary Area (single post):

$$A_n = A_g = 24 \text{ ft}^2$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-24	2 / 5
Section	Freestanding EWF.01			Job No.

Moment Arm (@ baseplate):

$$arm_1 = 1.05 * \left(\frac{h_c}{2} \right) = 3.675 \text{ ft}$$

Moment Arm (@ top of ftg.):

$$arm_T = 1.05 * \left(\frac{s}{2} \right) + 0.5 \text{ ft} = 4.7 \text{ ft}$$

Wind Pressure:

Wind Load Section 1:

Wind Moment Section 1:

Wind Torsion:

Seismic Load on Section 1 (alum. cab.):

Seismic Load Section 1 w/ Over strength:

EQ Lateral Shear Force @ baseplate:

EQ Lateral Force Moment:

EQ Lateral Force w/ OS:

EQ Lateral Force Moment w/OS:

$$EQ_{s1} = EQ2.C_s * DL = 85.793 \text{ lbf}$$

$$EQ_{s1os} = EQ_{s1} * EQ2.OS = 150.138 \text{ lbf}$$

$$V_{1eq} = EQ_{s1} = 85.793 \text{ lbf}$$

$$M_{1eq} = V_{1eq} * arm_1 = 315.291 \text{ lbf * ft}$$

$$V_{1eqos} = EQ_{s1os} = 150.138 \text{ lbf}$$

$$M_{1eqos} = V_{1eqos} * arm_1 = 551.758 \text{ lbf * ft}$$

LRFD Load Combinations (as applicable-anchorage)

LC: 0.9 DL + 1.0 W

Dead Load:

$$DL_{min} = \frac{0.9 * (DL_{cab})}{n_p} = 107.325 \text{ lbf}$$

Shear Wind:

Moment Wind:

LC: 1.2 DL + 1.0 W

Dead Load:

$$DL_{max} = \frac{1.2 * (DL_{cab})}{n_p} = 143.1 \text{ lbf}$$

Shear Wind:

Moment Wind:

LC: 0.9 DL - 1.0 E_v + E_{mh}

Dead Load:

$$DL_{eqmin} = \frac{0.9 * (DL_{cab})}{n_p} = 107.325 \text{ lbf}$$

Vertical Seismic:

$$E_{v1} = \frac{-0.2 * EQ2.SDS * (DL_{cab})}{n_p} = -32.436 \text{ lbf}$$

Shear EQ:

$$V_{1eq1} = \frac{EQ_{s1os}}{n_p} = 150.138 \text{ lbf}$$

Moment EQ:

$$M_{1eq1} = \left(\frac{EQ_{s1os}}{n_p} \right) * arm_1 = 551.758 \text{ lbf * ft}$$

LC: 1.2 DL + 1.0 E_v + E_{mh}

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-24	3 / 5
Section	Freestanding EWF.01			Job No.

Dead Load:

$$DL_{1eqmax} = \frac{1.2 * (DL_{cab})}{n_p} = 143.1 \text{ lbf}$$

Vertical Seismic:

$$E_{v2} = \frac{0.2 * EQ2.SDS * (DL_{cab})}{n_p} = 32.436 \text{ lbf}$$

Shear EQ:

$$V_{eq2} = \frac{EQ_{s1os}}{n_p} = 150.138 \text{ lbf}$$

Moment EQ:

$$M_{eq2} = \frac{EQ_{s1os} * arm_1}{n_p} = 551.758 \text{ lbf * ft}$$

ASD Load Combinations

(Note: Omit axial loads on post-no restoring moment weld design)

LC: DL + 0.6 W

LC: DL + 0.7 (E_v + E_{mh})

Convert to ASD/service level loads

Vertical Load, ASD:

$$DL_{S1} = DL = 189.25 \text{ lbf}$$

Wind Pressure, ASD:

$$p_{wasd} = p_w * 0.6 = 15 \text{ psf}$$

Wind Load, ASD:

$$W_{lasd} = p_{wasd} * A_n = 360 \text{ lbf}$$

Wind Force Moment, ASD:

$$M_{wasd} = arm_1 * W_{lasd} = 1323 \text{ ft * lbf}$$

Max. Vertical Load, ASD:

$$DL_{eqasd} = \frac{DL_{S1} + 0.7 * 0.2 * EQ2.SDS * DL_{S1}}{n_p} = 225.283 \text{ lbf}$$

Seismic Load, ASD:

$$EQ_{asd} = \frac{EQ2.V_B * 0.7}{n_p} = 60.055 \text{ lbf}$$

Seismic Load w/ OS, ASD:

$$EQ_{osasd} = EQ_{asd} * EQ2.OS = 105.097 \text{ lbf}$$

Seismic Force Moment, ASD:

$$M_{eqasd} = arm_1 * EQ_{asd} = 220.703 \text{ ft * lbf}$$

Seismic Force Moment w/ OS, ASD:

$$M_{eqasdos} = EQ_{osasd} * arm_1 = 386.231 \text{ lbf * ft}$$

Weld Connection From Post to Base Plate

Tube Depth:

$$d_{tube} = 3 \text{ in}$$

Tube Breadth:

$$b_{tube} = 3 \text{ in}$$

Tube Wall Thickness:

$$t_{tube} = 0.188 \text{ in}$$

Weld Line Section Modulus:

$$S_w = d_{tube} * b_{tube} + \frac{d_{tube}^2}{3} = 12 \text{ in}^2$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-24	4 / 5
Section	Freestanding EWF.01			Job No.

Weld Line Area:

$$A_w = d_{tube} * 2 + b_{tube} * 2 = 12 \text{ in}$$

Fillet Weld Design (AISC 360 Section J2.4 or ADM J.2)

Weld to resist loads V & M.

Material = "Steel"

Weld Group Configuration:

Type = "sq 3x3x0.188"

Input Weld Shear Load:

$$V = W_{lasd} = 360 \text{ lbf}$$

Input Weld Moment Load:

$$M = M_{wasd} = 1323 \text{ ft * lbf}$$

Weld Line Section Modulus (bending):

$$S_w = \text{Report1}.S_w = 12 \text{ in}^2$$

Weld Line Section Modulus (shear):

$$A_w = \text{Report1}.A_w = 12 \text{ in}$$

Required Strength:

$$R = \sqrt{\left(\frac{V}{A_w}\right)^2 + \left(\frac{M}{S_w}\right)^2} = 1323.3 \frac{\text{lb}}{\text{in}}$$

Weld Electrode Tensile Strength:

$$f_u = 70 \text{ ksi}$$

Weld Factor of Safety:

$$\Omega_w = 2$$

Strength of Weld per inch:

$$R_n = \begin{cases} \frac{0.707 * f_u * 0.6 * \left(\frac{1 \text{ in}}{16}\right)}{\Omega_w} & \text{if Material == "Steel"} \\ \frac{0.707 * 0.85 * f_u * 0.6 * \left(\frac{1 \text{ in}}{16}\right)}{\Omega_w} & \text{otherwise} \end{cases} = 927.9 \frac{\text{lb}}{\text{in}}$$

Required Size of Weld:

$$a_{req} = \text{RoundUp}\left(\frac{R}{R_n}\right) = 2/16" \text{ Weld Leg Size}$$

Foundation Loads

Spread Footing Foundation

Nominal loads for allowable capacities per geotechnical report. Seismic Loads to have omega/overstrength applied (cantilever foundation system). Design provided in design worksheet to follow.

Width of Footing:

$$W_{ftg} = 4 \text{ ft}$$

Length of Footing:

$$l_{ftg} = 4 \text{ ft}$$

Width of Pedestal:

$$W_{ped} = 2 \text{ ft}$$

Length of Pedestal:

$$l_{ped} = 4 \text{ ft}$$

Height of Pedestal:

$$H_{ped} = 18 \text{ in}$$

Weight of Concrete Pedestal:

$$W_{ped} = W_{ped} * l_{ped} * H_{ped} * 150 \text{ pcf} = 1800 \text{ lbf}$$

LC: 0.9 DL + W

(nominal values for foundation software shown below)

Vertical Force:

$$A_1 = 0.9 * (DL + W_{ped}) = 1790.325 \text{ lbf}$$

Horizontal Force:

$$P_1 = (B * s * p_w) = 600 \text{ lbf}$$

Moment:

$$M_1 = P_1 * \text{arm}_T = 2820 \text{ lbf * ft}$$

**MISSION
STRUCTURE**
ENGINEERING

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-24	5 / 5
Section	Freestanding EWF.01			Job No.

LC: $0.9 \text{ DL} + (E_v + E_{mh})$

(nominal values for foundation software shown below)

DL Vertical Force:

$$A_2 = 0.9 * (\text{DL} + \text{Wt}_{\text{ped}}) = 1790.325 \text{ lbf}$$

EQ Vertical Force:

$$A_3 = (-0.2 * \text{EQ2.SDS} * (\text{DL} + \text{Wt}_{\text{ped}})) = -541.076 \text{ lbf}$$

Horizontal Forces:

Sign Cabinet:

$$P_2 = \text{EQ2.V}_B * \text{EQ2.OS} = 150.138 \text{ lbf}$$

Sign Cabinet moment arm:

$$a_2 = \text{arm}_T = 4.7 \text{ ft}$$

Sign Cabinet moment:

$$M_2 = P_2 * a_2 = 705.650 \text{ lbf * ft}$$

Combined EQ Axial:

$$A_{\text{eq}} = A_2 + A_3 = 1249.249 \text{ lbf}$$

Combined EQ Shear:

$$V_{\text{eq}} = P_2 = 150.138 \text{ lbf}$$

Combined EQ Moment:

$$M_{\text{eq}} = M_2 = 705.650 \text{ lbf * ft}$$

Weight Takeoff

Component	Height:		7 ft Width:		3 ft	
	Unit Wt	Unit Qty	Wt	Qty	Weight	
Skin	2 psf	21 ft ²	42 lbf	2	84 lbf	
Post	10 plf	7 ft	70 lbf	1	70 lbf	
Channel Extrusion	1.5 plf	20 ft	30 lbf	1	30 lbf	
Misc Framing/Stiffeners	0.25 psf	21 ft ²	5.25 lbf	1	5.25 lbf	

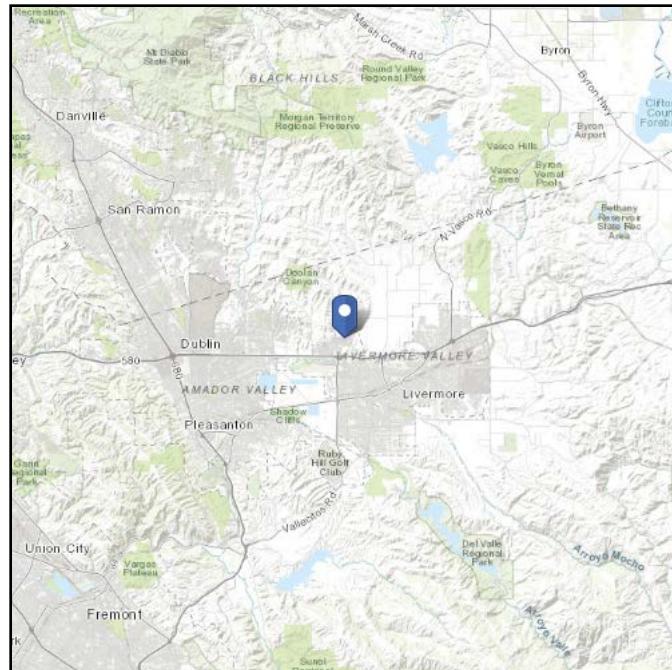
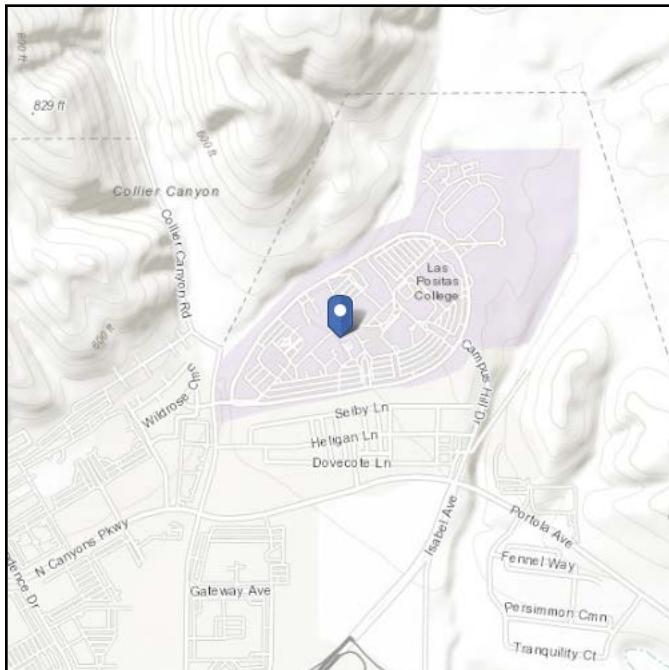
Cabinet Wt.: 119.3 lbf

Total: 189.3 lbf

ASCE Hazards Report

Address:

Las Positas College - 3000
Campus Hill Drive
Livermore,



Standard: ASCE/SEI 7-22

Risk Category: III

Soil Class: D - Stiff Soil

Latitude: 37.710873

Longitude: -121.80058

Elevation: 480.38484203241944 ft
(NAVD 88)

Wind

Results:

Wind Speed	99 Vmph
10-year MRI	64 Vmph
25-year MRI	70 Vmph
50-year MRI	75 Vmph
100-year MRI	79 Vmph
300-year MRI	87 Vmph
700-year MRI	93 Vmph
1,700-year MRI	99 Vmph
3,000-year MRI	103 Vmph
10,000-year MRI	113 Vmph
100,000-year MRI	129 Vmph
1,000,000-year MRI	147 Vmph

Data Source:

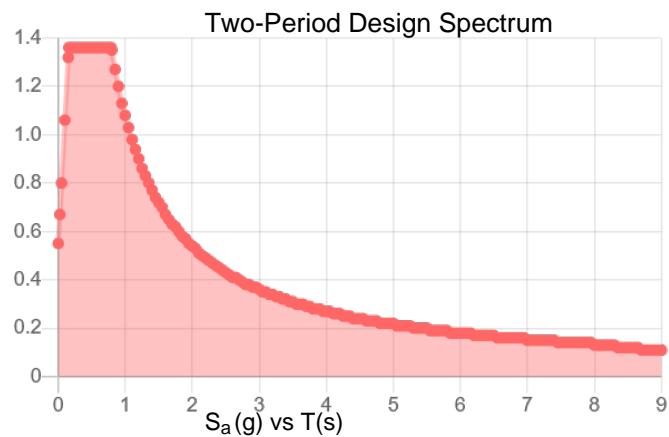
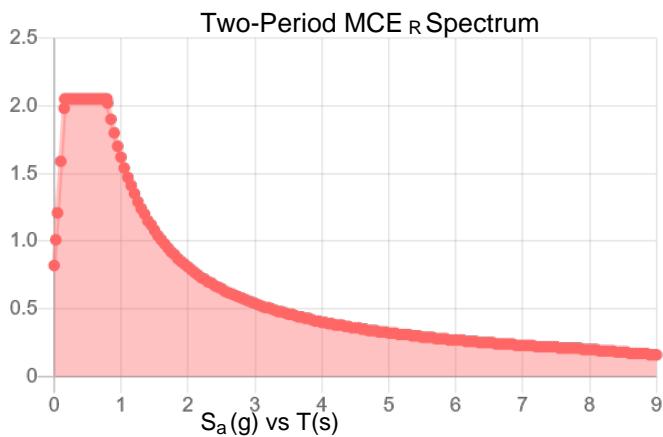
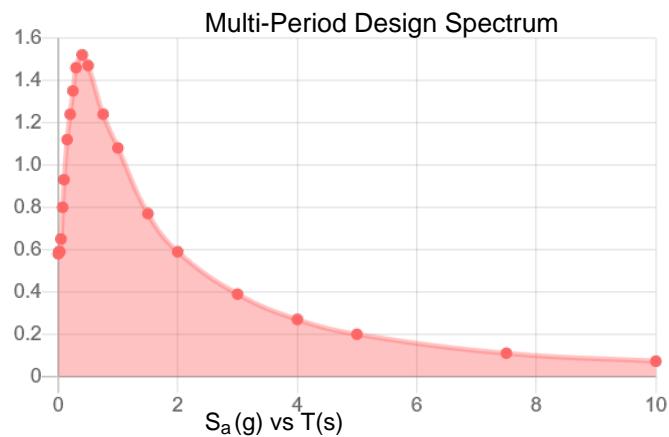
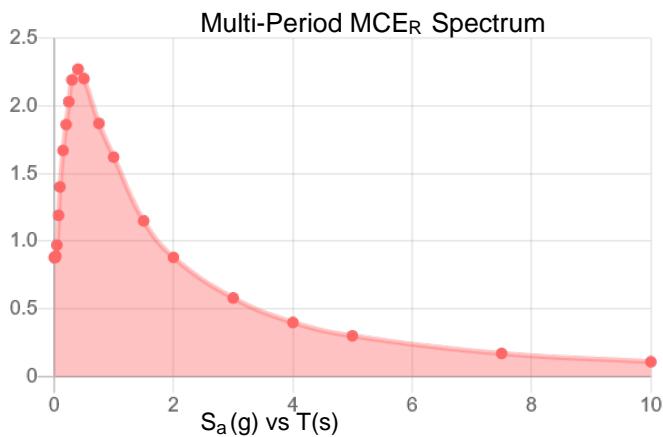
ASCE/SEI 7-22, Fig. 26.5-1C and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed:

Mon Nov 24 2025

AMERICAN SOCIETY OF CIVIL ENGINEERS

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-22 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years). Values for 10-year MRI, 25-year MRI, 50-year MRI and 100-year MRI are Service Level wind speeds, all other wind speeds are Ultimate wind speeds.





Site is not in a hurricane-prone region as defined in ASCE/SEI 7-22 Section 26.2.

Site Soil Class: D - Stiff Soil

Results:

PGA _M :	0.73	T _L :	8
S _{MS} :	2.05	S _S :	2.13
S _{M1} :	1.62	S ₁ :	0.81
S _{DS} :	1.36	V _{S30} :	260
S _{D1} :	1.08		

Seismic Design Category: E

MCE_R Vertical Response Spectrum
Vertical ground motion data has not yet been made available by USGS.

Design Vertical Response Spectrum
Vertical ground motion data has not yet been made available by USGS.

Data Accessed: **Mon Nov 24 2025**

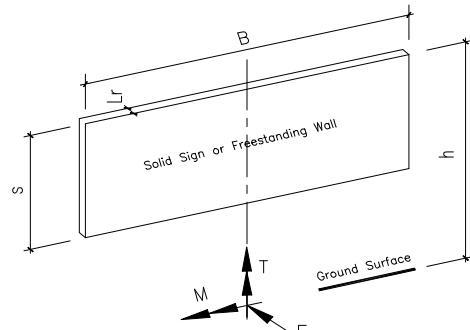
Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-22 and ASCE/SEI 7-22 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-22 Ch. 21 are available from USGS.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.



Wind Analysis for Freestanding Wall & Sign Based on ASCE 7-16

Monument Sign Wind Pressure

INPUT DATA

Exposure category (B, C or D)	=	C
Importance factor, 1.0 only, (Table 1.5-2)	I _w =	1.00
Basic wind speed (ASCE 7 26.5.1)	V =	99 mph, (159.32 kph)
Topographic factor (26.8 & Table 26.8-1)	K _{zt} =	1 Flat
Height of top	h =	15 ft, (4.57 m)
Vertical dimension (for wall, s = h)	s =	15 ft, (4.57 m)
Horizontal dimension	B =	4 ft, (1.22 m)
Dimension of return corner	L _r =	0 ft, (0.00 m)

DESIGN SUMMARY

Max horizontal wind pressure	p =	25 psf, (1201 N/m ²)
Max total horizontal force at centroid of base	F =	1.50 kips, (7 kN)
Max bending moment at centroid of base	M =	12.42 ft-kips, (17 kN-m)
Max torsion at centroid of base	T =	1.20 ft-kips, (2 kN-m)

ANALYSIS

Velocity pressure

$$q_h K_d = (0.00256 K_z K_{zt} K_e V^2) K_d = 18.13 \text{ psf}$$

where: q_h = velocity pressure at mean roof height, h . (Eq. 26.10-1 page 277), $K_e = 1.00$, (Tab. 26.9-1 page 275)

K_z = velocity pressure exposure coefficient evaluated at height, h , (Tab. 26.10-1, pg 277) = 0.85

K_d = wind directionality factor. (Tab. 26.6-1, page 274) = 0.85

h = height of top = 15.00 ft

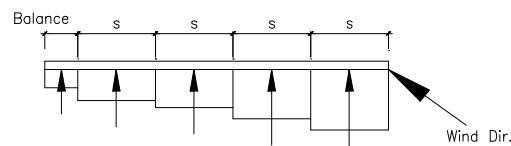
Wind Force Case A: resultant force through the geometric center (Sec. 29.3.1)

$p = q_h K_d G C_N$	=	25 psf
$F = p A_s$	=	1.50 kips
$M = F (h - 0.5s)$ for sign, $F (0.55h)$ for wall	=	12.42 ft-kips
$T =$	=	0.00 ft-kips
where: G = gust effect factor. (Sec. 26.9)	=	0.85
C_f = net force coefficient. (Fig. 29.3-1, page 301)	=	1.63
$A_s = B s$	=	60.0 ft ²

Wind Force Case B: resultant force at 0.2 B offset of the geometric center (Sec. 29.3.1)

$p = \text{Case A}$	=	25 psf
$F = \text{Case A}$	=	1.50 kips
$M = \text{Case A}$	=	12.42 ft-kips
$T = 0.2 F B$	=	1.20 ft-kips

Wind Force Case C: resultant force different at each region (Sec. 29.4.1)


$$p = q_h G C_f$$

$$F = \sum p A_s$$

$$M = \sum [F (h - 0.5s) \text{ for sign, } F (0.55h) \text{ for wall}]$$

$$T = \sum T_s$$

Distance (ft)	C_f (Fig. 29.3-1)	P_i (psf)	A_{si} (ft^2)	F_i (kips)	M_i (ft-kips)	T_i (ft-kips)
4.0	1.800	28	60	1.66	13.73	0.00
Σ				1.66	13.73	0.00

<== Case C may not be considered, footnote 3 of Fig. 6-20

PROJECT : Las Positas
CLIENT :
JOB NO. : DATE :

PAGE :
DESIGN BY :
REVIEW BY :

HSS (Tube, Pipe) Member Design with Torsional Loading Based on AISC 360-10/16

EWF.01 Post DL+W

INPUT DATA & DESIGN SUMMARY

MEMBER SHAPE (Tube or Pipe) & SIZE

HSS2X2X3/16

<== Tube

STEEL YIELD STRESS

$F_y = 46$ ksi, (317 MPa)

TORSIONAL FORCE

$T_r = 0.36$ ft-kips, (0 kN-m), ASD

AXIAL COMPRESSION FORCE

$P_r = 0.19$ kips, (1 kN), ASD

STRONG AXIS EFFECTIVE LENGTH

$kL_x = 12$ ft, (3.66 m)

WEAK AXIS EFFECTIVE LENGTH

$kL_y = 12$ ft, (3.66 m)

STRONG AXIS BENDING MOMENT

$M_{rx} = 1.33$ ft-kips, (2 kN-m), ASD

STRONG AXIS BENDING UNBRACED LENGTH

$L_b = 7$ ft, (2.13 m), (AISC 360 F2.2.c)

STRONG DIRECTION SHEAR LOAD, ASD

$V_{strong} = 0.36$ kips, (2 kN)

WEAK AXIS BENDING MOMENT

$M_{ry} = 0$ ft-kips, (0 kN-m), ASD

WEAK DIRECTION SHEAR LOAD, ASD

$V_{weak} = 0$ kips, (0 kN)

THE DESIGN IS ADEQUATE.

ANALYSIS

CHECK TORSIONAL CAPACITY (AISC 360 H3.1)

$$T_c = \frac{1}{\Omega_T} T_n = \frac{1}{\Omega_T} \begin{cases} \left[0.6F_y, \text{ for } \frac{h}{t} \leq 2.45\sqrt{\frac{E}{F_y}} \right] \\ \left[2(B-t)(H-t) - 4.5(4-\pi)t^3 \right] \left[0.6F_y 2.45\sqrt{\frac{E}{F_y}} \frac{t}{h}, \text{ for } \frac{h}{t} \leq 3.07\sqrt{\frac{E}{F_y}} \right], \text{ for HSS Tube} \\ \left[0.458 \frac{E\pi^2}{(h/t)^2}, \text{ for } \frac{h}{t} \leq 260 \right] \end{cases} = 1.7 \text{ ft-kips}$$

$$\begin{cases} \frac{\pi(D-t)^2 t}{2} \text{ Max} \left[\frac{1.23E}{\sqrt{L(D/t)^{(5/4)}}}, \frac{0.60E}{(D/t)^{(3/2)}} \right], \text{ for HSS Pipe} \end{cases} > T_r \text{ [Satisfactory]}$$

Where B 2.00 H 2.00 h 1.44 t 0.19 D 29000 E

$\Omega_T = 1.67$, ASD

CHECK COMBINED COMPRESSION AND BENDING CAPACITY (AISC 360 H1)

$$\begin{cases} \frac{P_r}{P_c} + 8 \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right), \text{ for } \frac{P_r}{P_c} \geq 0.2 \\ \frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right), \text{ for } \frac{P_r}{P_c} < 0.2 \end{cases} = 0.75 < 1.3 \text{ [Satisfactory]}$$

(2021 IBC, 1605.3.2)

Where $P_c = P_n / \Omega_c = 8 / 1.67 = 4.65$ kips, (AISC 360 Chapter E)

> P_r [Satisfactory]

$M_{cx} = M_n / \Omega_b = 3.06 / 1.67 = 1.83$ ft-kips, (AISC 360 Chapter F)

> M_{rx} [Satisfactory]

$M_{cy} = M_n / \Omega_b = 3.06 / 1.67 = 1.83$ ft-kips, (AISC 360 Chapter F)

> M_{ry} [Satisfactory]

CHECK SHEAR CAPACITY (AISC 360 G2)

$V_{n,strong} / \Omega_v = 13.8 / 1.67 = 8.3$ kips > $V_{strong} = 0.4$ kips [Satisfactory]

$V_{n,weak} / \Omega_v = 13.8 / 1.67 = 8.3$ kips > $V_{weak} = 0.0$ kips [Satisfactory]

CHECK COMBINED TORSION, SHEAR, COMPRESSION, AND BENDING CAPACITY (AISC 360 H3.2)

$$\begin{cases} \frac{P_r}{P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) + \left[\text{Max} \left(\frac{V_{strong}}{V_{c,strong}}, \frac{V_{weak}}{V_{c,weak}} \right) + \frac{T_r}{T_c} \right]^2, \text{ for } \frac{T_r}{T_c} > 0.2 \\ \text{Torsion Neglected, for } \frac{T_r}{T_c} \leq 0.2 \end{cases} = 0.8 < 1.3 \text{ [Satisfactory]}$$

(2021 IBC, 1605.3.2)

**Anchor Designer™ for
Concrete Software**
Version 3.4.2506.1

Company:		Date:	11/24/2025
Engineer:		Page:	1
Project:	Las Positas		
Address:			
Phone:			
E-mail:			

1. Project information

Project description:
Location: EWF.01 0.9DL+W
Design name: Design

Comment:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-19
Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place
Material: F1554 Grade 55
Diameter (inch): 0.375
Effective Embedment depth, h_{ef} (inch): 8.000
Anchor category: -
Anchor ductility: Yes
 h_{min} (inch): 9.13
 C_{min} (inch): 2.25
 S_{min} (inch): 2.25

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 24.00
State: Cracked
Compressive strength, f_c (psi): 2500
 $\Psi_{c,v}$: 1.2
Reinforcement condition: B tension, B shear
Supplemental edge reinforcement: Not applicable
Reinforcement provided at corners: Yes
Ignore concrete breakout in tension: No
Ignore concrete breakout in shear: No
Ignore 6do requirement: No
Build-up grout pad: Yes

Base Plate

Length x Width x Thickness (inch): 8.50 x 8.50 x 0.50
Yield stress: 50000 psi

Profile type/size: 4X4X1/4

Recommended Anchor

Anchor Name: Heavy Hex Bolt - 3/8"Ø Heavy Hex Bolt, F1554 Gr. 55

Company:		Date:	11/24/2025
Engineer:		Page:	2
Project:	Las Positas		
Address:			
Phone:			
E-mail:			

Load and Geometry

Load factor source: ACI 318 Section 5.3

Load combination: not set

Seismic design: Yes

Anchors subjected to sustained tension: Not applicable

Ductility section for tension: 17.10.5.3 (d) is satisfied

Ductility section for shear: 17.10.6.3 (c) is satisfied

Ω_0 factor: not set

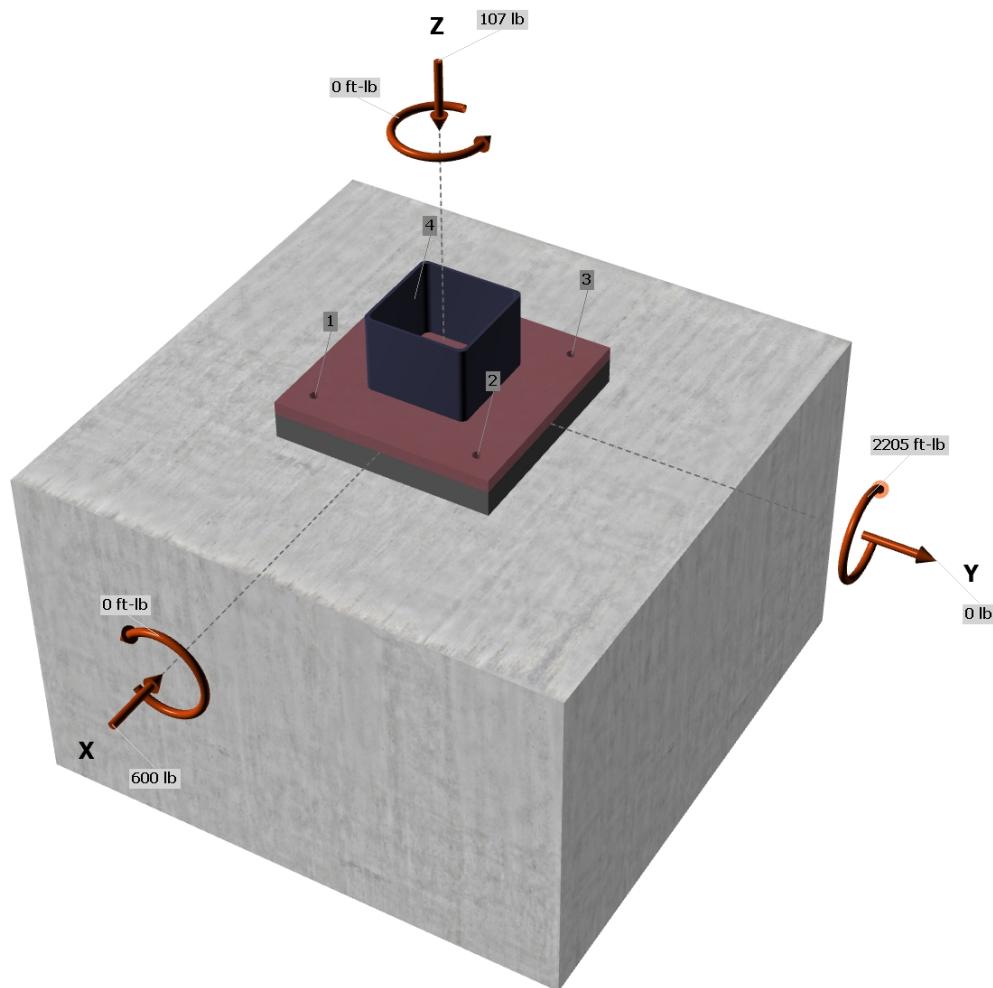
Apply entire shear load at front row: No

Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

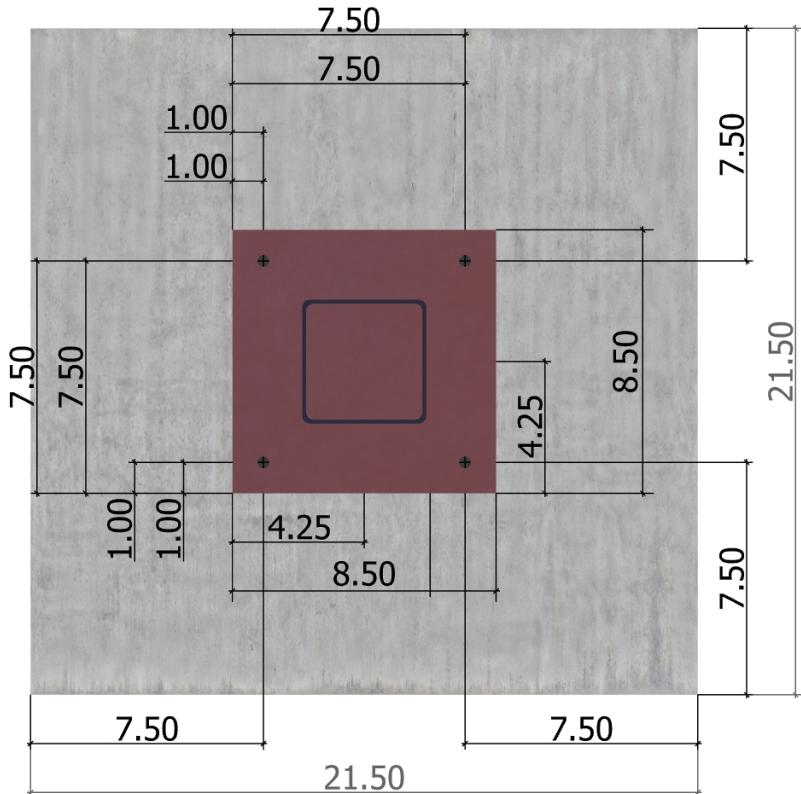
N_{ua} [lb]: -107

V_{uax} [lb]: -600


V_{uay} [lb]: 0

M_{ux} [ft-lb]: 0

M_{uy} [ft-lb]: -2205


M_{uz} [ft-lb]: 0

<Figure 1>

Company:		Date:	11/24/2025
Engineer:		Page:	3
Project:	Las Positas		
Address:			
Phone:			
E-mail:			

<Figure 2>

3. Resulting Anchor Forces

Anchor	Tension load, N_{ua} (lb)	Shear load x, V_{uax} (lb)	Shear load y, V_{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb)
1	1862.2	-150.0	0.0	150.0
2	1862.2	-150.0	0.0	150.0
3	0.0	-150.0	0.0	150.0
4	0.0	-150.0	0.0	150.0
Sum	3724.4	-600.0	0.0	600.0

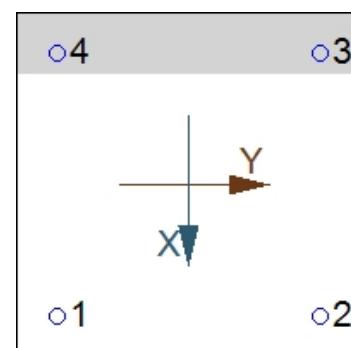
Maximum concrete compression strain (%): 0.14

Maximum concrete compression stress (psi): 595

Resultant tension force (lb): 3724

Resultant tension force (lb): 3724
Resultant compression force (lb): 3831

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00


Eccentricity of resultant tension forces in y-axis, e'_{NY} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00
Eccentricity of resultant shear forces in x-axis, e'Vx (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

Effectivity of resultant shear forces in y axis, σ_y (kN/m), 0.00

<Figure 3>

Company:		Date:	11/24/2025
Engineer:		Page:	4
Project:	Las Positas		
Address:			
Phone:			
E-mail:			

4. Steel Strength of Anchor in Tension (Sec. 17.6.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
5815	0.75	4361

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.6.2)

$N_b = k_c \lambda_a \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. 17.6.2.2.1)									
k_c	λ_a	f'_c (psi)	h_{ef} (in)	N_b (lb)					
24.0	1.00	2500	5.000	13416					
$0.75\phi N_{cbg} = 0.75\phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. 17.5.1.2 & Eq. 17.6.2.1a)									
A_{Nc} (in ²)	A_{Nco} (in ²)	$C_{a,min}$ (in)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	$0.75\phi N_{cbg}$ (lb)
322.50	225.00	7.50	1.000	1.000	1.00	1.000	13416	0.70	10096

6. Pullout Strength of Anchor in Tension (Sec. 17.6.3)

$$0.75\phi N_{pn} = 0.75\phi \Psi_{c,P} N_p = 0.75\phi \Psi_{c,P} 8A_{brg} f'_c \text{ (Sec. 17.5.1.2, Eq. 17.6.3.1 & 17.6.3.2.2a)}$$

$\Psi_{c,P}$	A_{brg} (in ²)	f'_c (psi)	ϕ	$0.75\phi N_{pn}$ (lb)
1.0	0.30	2500	0.70	3140

7. Steel Strength of Anchor in Shear (Sec. 17.7.1)

V_{sa} (lb)	ϕ_{grout}	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)
3490	0.8	0.65	1815

8. Concrete Breakout Strength of Anchor in Shear (Sec. 17.7.2)

Shear perpendicular to edge in x-direction:

$$V_{bx} = \min[7(l_e/d_a)^{0.2} \sqrt{d_a \lambda_a \sqrt{f'_c C_{a1}}^{1.5}}; 9\lambda_a \sqrt{f'_c C_{a1}}^{1.5}] \text{ (Eq. 17.7.2.2.1a & Eq. 17.7.2.2.1b)}$$

l_e (in)	d_a (in)	λ_a	f'_c (psi)	C_{a1} (in)	V_{bx} (lb)
3.00	0.375	1.00	2500	14.00	17017

$$\phi V_{cbgx} = \phi (A_{vc}/A_{vco}) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx} \text{ (Sec. 17.5.1.2 & Eq. 17.7.2.1b)}$$

A_{vc} (in ²)	A_{vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
451.50	882.00	1.000	0.807	1.200	1.000	17017	0.70	5906

Shear parallel to edge in y-direction:

$$V_{bx} = \min[7(l_e/d_a)^{0.2} \sqrt{d_a \lambda_a \sqrt{f'_c C_{a1}}^{1.5}}; 9\lambda_a \sqrt{f'_c C_{a1}}^{1.5}] \text{ (Eq. 17.7.2.2.1a & Eq. 17.7.2.2.1b)}$$

l_e (in)	d_a (in)	λ_a	f'_c (psi)	C_{a1} (in)	V_{bx} (lb)
3.00	0.375	1.00	2500	7.50	6673

$$\phi V_{cbgy} = \phi (2)(A_{vc}/A_{vco}) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx} \text{ (Sec. 17.5.1.2, 17.7.2.1(c) & Eq. 17.7.2.1b)}$$

A_{vc} (in ²)	A_{vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgy} (lb)
241.88	253.13	1.000	1.000	1.200	1.000	6673	0.70	10712

9. Concrete Pryout Strength of Anchor in Shear (Sec. 17.7.3)

$$\phi V_{cpq} = \phi k_{cp} N_{cbg} = \phi k_{cp} (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b \text{ (Sec. 17.5.1.2 & Eq. 17.7.3.1b)}$$

k_{cp}	A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕV_{cpq} (lb)
2.0	462.25	225.00	1.000	1.000	1.000	1.000	13416	0.70	38589

10. Results

Interaction of Tensile and Shear Forces (Sec. R17.8)

Tension	Factored Load, N_{ua} (lb)	Design Strength, ϕN_n (lb)	Ratio	Status
Steel	1862	4361	0.43	Pass
Concrete breakout	3724	10096	0.37	Pass

Anchor Designer™ for
Concrete Software
Version 3.4.2506.1

Company:		Date:	11/24/2025
Engineer:		Page:	5
Project:	Las Positas		
Address:			
Phone:			
E-mail:			

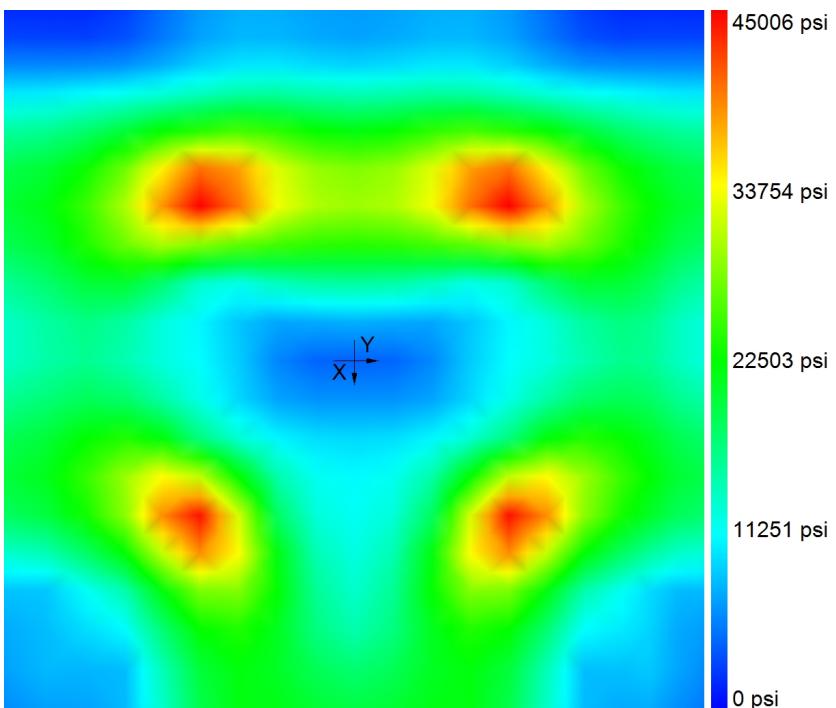
Pullout	1862	3140	0.59	Pass (Governs)
----------------	-------------	-------------	-------------	-----------------------

Shear	Factored Load, V_{ua} (lb)	Design Strength, ϕV_n (lb)	Ratio	Status
-------	------------------------------	----------------------------------	-------	--------

Steel	150	1815	0.08	Pass
T Concrete breakout x-	600	5906	0.10	Pass (Governs)
Concrete breakout y+	300	10712	0.03	Pass
Pryout	600	38589	0.02	Pass

Interaction check	$(N_{ua}/\phi N_{us})^{5/3}$	$(V_{ua}/\phi V_{us})^{5/3}$	Utilization Ratio	Permissible	Status
-------------------	------------------------------	------------------------------	-------------------	-------------	--------

Sec. R17.8	0.42	0.02	44.1%	1.0	Pass
------------	------	------	-------	-----	------


3/8"Ø Heavy Hex Bolt, F1554 Gr. 55 with hef = 8.000 inch meets the selected design criteria.

Company:		Date:	11/24/2025
Engineer:		Page:	6
Project:	Las Positas		
Address:			
Phone:			
E-mail:			

Base Plate Thickness

Steel **50000 psi**
Maximum stress **45006 psi**
Calculated plate thickness **0.343 inch**

Stress distribution

For ACI and CSA design methods, maximum base plate stress is limited to 0.9 times yield stress.

For ETAG and EN-1992-4 design method, maximum base plate stress is limited to yield stress divide by 1.5.

Plate stress is derived using Von Mises theory.

$$\sigma_{xx} = \frac{F_{xx}}{t} + \frac{6M_{xx}}{t^2} \text{ (@ bottom) or } \sigma_{xx} = \frac{F_{xx}}{t} - \frac{6M_{xx}}{t^2} \text{ (@ top)}$$

$$\sigma_{yy} = \frac{F_{yy}}{t} + \frac{6M_{yy}}{t^2} \text{ (@bottom) or } \sigma_{yy} = \frac{F_{yy}}{t} - \frac{6M_{yy}}{t^2} \text{ (@ top)}$$

$$\sigma_{xy} = \frac{F_{xy}}{t} + \frac{6M_{xy}}{t^2} \text{ (@bottom) or } \sigma_{xy} = \frac{F_{xy}}{t} - \frac{6M_{xy}}{t^2} \text{ (@ top)}$$

$$\sigma_{xz} = \frac{V_x}{t}$$

$$\sigma_{yz} = \frac{V_y}{t}$$

$\sigma_{xx}, \sigma_{yy}, \sigma_{xy}$ as follows:

$$S_1 = \frac{\sigma_{xx} + \sigma_{yy}}{2} + \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \sigma_{xy}^2}$$

$$S_2 = \frac{\sigma_{xx} + \sigma_{yy}}{2} - \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \sigma_{xy}^2}$$

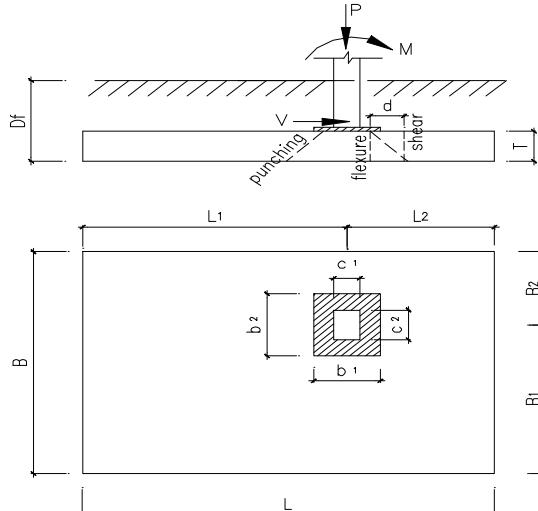
$$S_3 = 0$$

$$\sigma_{VonMises} = \sqrt{\frac{(S_1 - S_2)^2 + (S_1 - S_3)^2 + (S_2 - S_3)^2}{2}}$$

11. Warnings

- Per designer input, ductility requirements for tension have been determined to be satisfied – designer to verify.
- Per designer input, ductility requirements for shear have been determined to be satisfied – designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.

Eccentric Footing Design Based on ACI 318-19


EWF.01 0.9DL+W Spread Ftg.

INPUT DATA

COLUMN WIDTH	c_1	=	2	in
COLUMN DEPTH	c_2	=	2	in
BASE PLATE WIDTH	b_1	=	5	in
BASE PLATE DEPTH	b_2	=	5	in
FOOTING CONCRETE STRENGTH	f_c'	=	2.5	ksi
REBAR YIELD STRESS	f_y	=	60	ksi
AXIAL DEAD LOAD	P_{DL}	=	1.791	k
AXIAL LIVE LOAD	P_{LL}	=	0	k
LATERAL LOAD (0=WIND, 1=SEISMIC)		=	0	Wind, SD
WIND AXIAL LOAD	P_{LAT}	=	0	k, SD
WIND MOMENT LOAD	M_{LAT}	=	2.82	ft-k, SD
WIND SHEAR LOAD	V_{LAT}	=	0.6	k, SD
SURCHARGE	q_s	=	0	ksf
SOIL WEIGHT	w_s	=	0.11	kcf
FOOTING EMBEDMENT DEPTH	D_f	=	1.5	ft
FOOTING THICKNESS	T	=	12	in
ALLOWABLE SOIL PRESSURE	Q_a	=	2	ksf
FOOTING WIDTH	B_1	=	2	ft
	B_2	=	2	ft
FOOTING LENGTH	L_1	=	2	ft
	L_2	=	2	ft
REINFORCING SIZE		#	4	

DESIGN SUMMARY

FOOTING WIDTH	B	=	4.00	ft
FOOTING LENGTH	L	=	4.00	ft
FOOTING THICKNESS	T	=	12	in
LONGITUDINAL REINF., TOP	1 # 4			
LONGITUDINAL REINF., BOT.	4 # 4 @ 14 in o.c.			
TRANSVERSE REINF., BOT.	4 # 4 @ 14 in o.c.			

THE FOOTING DESIGN IS ADEQUATE.

ANALYSIS

DESIGN LOADS AT TOP OF FOOTING (IBC 1605.2 & ACI 318 5.3)

CASE 1:	DL + LL	P = 2 kips	1.2 DL + 1.6 LL	P _u = 2 kips
		M = 0 ft-kips		M _u = 0 ft-kips
		e = 0.0 ft, fr cl ftg		e _u = 0.0 ft, fr cl ftg
CASE 2:	DL + LL + 0.6(1.3) W	P = 2 kips	1.2 DL + LL + 1.0 W	P _u = 2 kips
		M = 2 ft-kips		M _u = 3 ft-kips
		V = 0 kips		V _u = 1 kips
CASE 3:	DL + LL + 0.6(0.65) W	P = 2 kips	0.9 DL + 1.0 W	P _u = 2 kips
		M = 2 ft-kips		M _u = 3 ft-kips
		V = 0 kips		V _u = 1 kips
		e = 0.9 ft, fr cl ftg		e _u = 1.7 ft, fr cl ftg

CHECK OVERTURNING FACTOR (2021 IBC 1605.2.1, 1808.3.1, & ASCE 7-22 12.13.4)

$M_R / M_O = 3.0 > F = 1.0 / 0.9 = 1.11$ [Satisfactory]

$$\text{Where } M_O = M_{LAT} + V_{LAT} T - P_{LAT} L_2 = 3 \text{ k-ft}$$

$$P_{ftq} = (0.15 \text{ kcf}) T B L = 2.40 \text{ k, footing weight}$$

$$P_{soil} = w_s (D_f - T) B L = 0.88 \text{ k, soil weight}$$

$$M_R = P_{DL}L_2 + 0.5 (P_{fg} + P_{soil}) L = 10 \text{ k-ft}$$

FOR REVERSED LATERAL LOADS,

$M_R / M_O = 2.7 > F = 1.0 / 0.9$ [Satisfactory]

Where $M_O = M_{LAT} + V_{LAT} D_f - P_{LAT} L_1 = 4 \text{ k-ft}$

$$M_R = P_{DL}L_1 + 0.5 (P_{fg} + P_{soil}) L = 10 \text{ k-ft}$$

CHECK SLIDING (2021 IBC 1807.2.3)

1.5 (V_{Lat, ASD}) = 0.54 kips < $\mu \Sigma W$ = 1.68 kips [Satisfactory]
Where μ = 0.4

CHECK SOIL BEARING CAPACITY (ACI 318 13.3.1.1)

Service Loads	CASE 1	CASE 2	CASE 3	
P	1.8	1.8	1.8	
e	0.0	1.6	1.0	ft (from center of footing)
q _s B L	0.0	0	0.0	k, (surcharge load)
(0.15-w _s)T B L	0.6	0.6	0.4	k, (footing increased)
Σ P	2.4	2.4	2.2	k
e _L	0.0 < L/6	1.2 > L/6	0.9 > L/6	ft
e _B	0.0 < B/6	0.0 < B/6	0.0 < B/6	ft
q _L	0.6	2.0	1.3	k / ft
q _{max}	0.2	0.5	0.3	ksf
q _{allow}	2.0	2.7	2.7	ksf

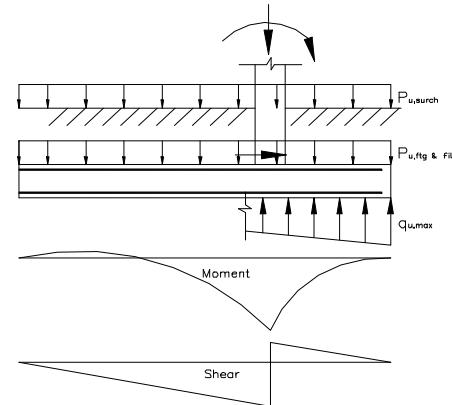
Where

$$q_L = \begin{cases} \frac{(\Sigma P) \left(1 + \frac{6e_L}{L}\right)}{L}, & \text{for } e_L \leq \frac{L}{6} \\ \frac{2(\Sigma P)}{3(0.5L - e_L)}, & \text{for } e_L > \frac{L}{6} \end{cases}$$

$$q_{MAX} = \begin{cases} \frac{q_L \left(1 + \frac{6e_B}{B}\right)}{B}, & \text{for } e_B \leq \frac{B}{6} \\ \frac{2q_L}{3(0.5B - e_B)}, & \text{for } e_B > \frac{B}{6} \end{cases}$$

[Satisfactory]

DESIGN FLEXURE & CHECK FLEXURE SHEAR


(ACI 318 13, 21, & 22)

$$q_{u,MAX} = \begin{cases} \frac{(\Sigma P_u) \left(1 + \frac{6e_u}{L}\right)}{BL}, & \text{for } e_u \leq \frac{L}{6} \\ \frac{2(\Sigma P_u)}{3B(0.5L - e_u)}, & \text{for } e_u > \frac{L}{6} \end{cases}$$

$$\rho_{MAX} = \frac{0.85 \beta_{1f} f_c}{f_y} \frac{\varepsilon_u}{\varepsilon_u + \varepsilon_t}$$

$$\rho = \frac{0.85 f_c \left(1 - \sqrt{1 - \frac{M_u}{0.383bd^2 f_c}}\right)}{f_y}$$

$$\rho_{MIN} = MIN \left(0.0018 \frac{T}{d}, \frac{4}{3} \rho \right)$$

FACTORED SOIL PRESSURE

Factored Loads	CASE 1	CASE 2	CASE 3	
P _u	2.1	2.1	1.6	k
e _u	0.0	1.6	2.1	ft
γ q _s B L	0.0	0.0	0.0	k, (factored surcharge load)
γ[0.15T + w _s (D _f - T)]BL	3.9	3.9	3.0	k, (factored footing & backfill loads)
Σ P _u	6.1	6.1	4.6	k
e _u	0.0 < L/6	0.6 < L/6	0.7 > L/6	ft
q _{u, max}	0.380	0.701	0.608	ksf

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 1

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.50	1.00	1.50	1.85	2.15	2.50	3.00	3.50	4.00
M _{u,col} (ft-k)	0	0	0	0	0	-0.3	-1.1	-2.1	-3.2	-4.3
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	2.1	2.1	2.1	2.1	2.1
P _{u,surch} (klf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (klf)	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
M _{u,fg & fill} (ft-k)	0	-0.1	-0.5	-1.1	-1.7	-2.3	-3.1	-4.4	-6.0	-7.9
V _{u,fg & fill} (k)	0	0.5	1.0	1.5	1.8	2.1	2.5	3.0	3.4	3.9
q _{u,soil} (ksf)	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38
M _{u,soil} (ft-k)	0	0.2	0.8	1.7	2.6	3.5	4.8	6.8	9.3	12.2
V _{u,soil} (k)	0	-0.8	-1.5	-2.3	-2.8	-3.3	-3.8	-4.6	-5.3	-6.1
Σ M _u (ft-k)	0	0.1	0.3	0.6	0.9	0.9	0.6	0.3	0.1	0
Σ V _u (kips)	0	-0.3	-0.5	-0.8	-1.0	1.0	0.8	0.5	0.3	0

(cont'd)

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 2

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.50	1.00	1.50	1.85	2.15	2.50	3.00	3.50	4.00
M _{u,col} (ft-k)	0	0	0	0	0	3.1	2.3	1.3	0.2	-0.9
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	2.1	2.1	2.1	2.1	2.1
P _{u,surch} (klf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (klf)	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
M _{u,fg & fill} (ft-k)	0	-0.1	-0.5	-1.1	-1.7	-2.3	-3.1	-4.4	-6.0	-7.9
V _{u,fg & fill} (k)	0	0.5	1.0	1.5	1.8	2.1	2.5	3.0	3.4	3.9
q _{u,soil} (ksf)	0.06	0.14	0.22	0.30	0.36	0.40	0.46	0.54	0.62	0.70
M _{u,soil} (ft-k)	0	0.0	0.2	0.6	1.1	1.6	2.4	4.0	6.0	8.8
V _{u,soil} (k)	0	-0.2	-0.6	-1.1	-1.5	-2.0	-2.6	-3.6	-4.8	-6.1
ΣM_u (ft-k)	0	-0.1	-0.3	-0.5	-0.6	2.4	1.7	0.8	0.2	0
ΣV_u (kips)	0	0.3	0.4	0.4	0.3	2.3	2.0	1.5	0.8	0

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 3

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.50	1.00	1.50	1.85	2.15	2.50	3.00	3.50	4.00
M _{u,col} (ft-k)	0	0	0	0	0	3.2	2.6	1.8	1.0	0.2
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	1.6	1.6	1.6	1.6	1.6
P _{u,surch} (klf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (klf)	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
M _{u,fg & fill} (ft-k)	0	-0.1	-0.4	-0.8	-1.3	-1.7	-2.3	-3.3	-4.5	-5.9
V _{u,fg & fill} (k)	0	0.4	0.7	1.1	1.4	1.6	1.8	2.2	2.6	3.0
q _{u,soil} (ksf)	0.00	0.08	0.15	0.23	0.28	0.33	0.38	0.46	0.53	0.61
M _{u,soil} (ft-k)	0	2.7	4.6	5.9	6.5	6.8	7.0	6.9	6.4	5.7
V _{u,soil} (k)	0	-1.1	-2.1	-2.9	-3.3	-3.7	-4.0	-4.3	-4.5	-4.6
ΣM_u (ft-k)	0	2.6	4.3	5.1	5.3	8.3	7.3	5.4	2.9	0
ΣV_u (kips)	0	-0.7	-1.3	-1.7	-2.0	-0.5	-0.5	-0.5	-0.3	0

DESIGN FLEXURE

Location	M _{u,max}	d (in)	P _{min}	P _{reqD}	P _{max}	S _{max}	use	P _{provD}
Top Longitudinal	0.6	ft-k	9.75	0.0000	0.0000	no limit	1 # 4	0.0004
Bottom Longitudinal	8.3	ft-k	8.75	0.0007	0.0005	0.0129	4 # 4 @ 14 in o.c.	0.0019
Bottom Transverse	0	ft-k / ft	8.50	0.0001	0.0001	0.0129	18	4 # 4 @ 14 in o.c.

[Satisfactory]

CHECK FLEXURE SHEAR

Direction	V _{u,max}	$\phi V_c = 2 \phi b d (f'_c)^{0.5}$	check V _u < ϕV_c
Longitudinal	2.3 k	32 k	[Satisfactory]
Transverse	0.2 k / ft	8 k / ft	[Satisfactory]

CHECK PUNCHING SHEAR (ACI 318 13.2.7.2, 22.6.4.1, 22.6.4.3, & 8.4.2.3)

$$v_{uL} (\text{psi}) = \frac{P_u - R}{AP} + \frac{0.5\gamma_v M_{ub} b_1}{J}$$

$$AP = 2(b_1 + b_2)d$$

$$J = \left(\frac{db_1^3}{6} \right) \left[1 + \left(\frac{d}{b_1} \right)^2 + 3 \left(\frac{b_2}{b_1} \right) \right]$$

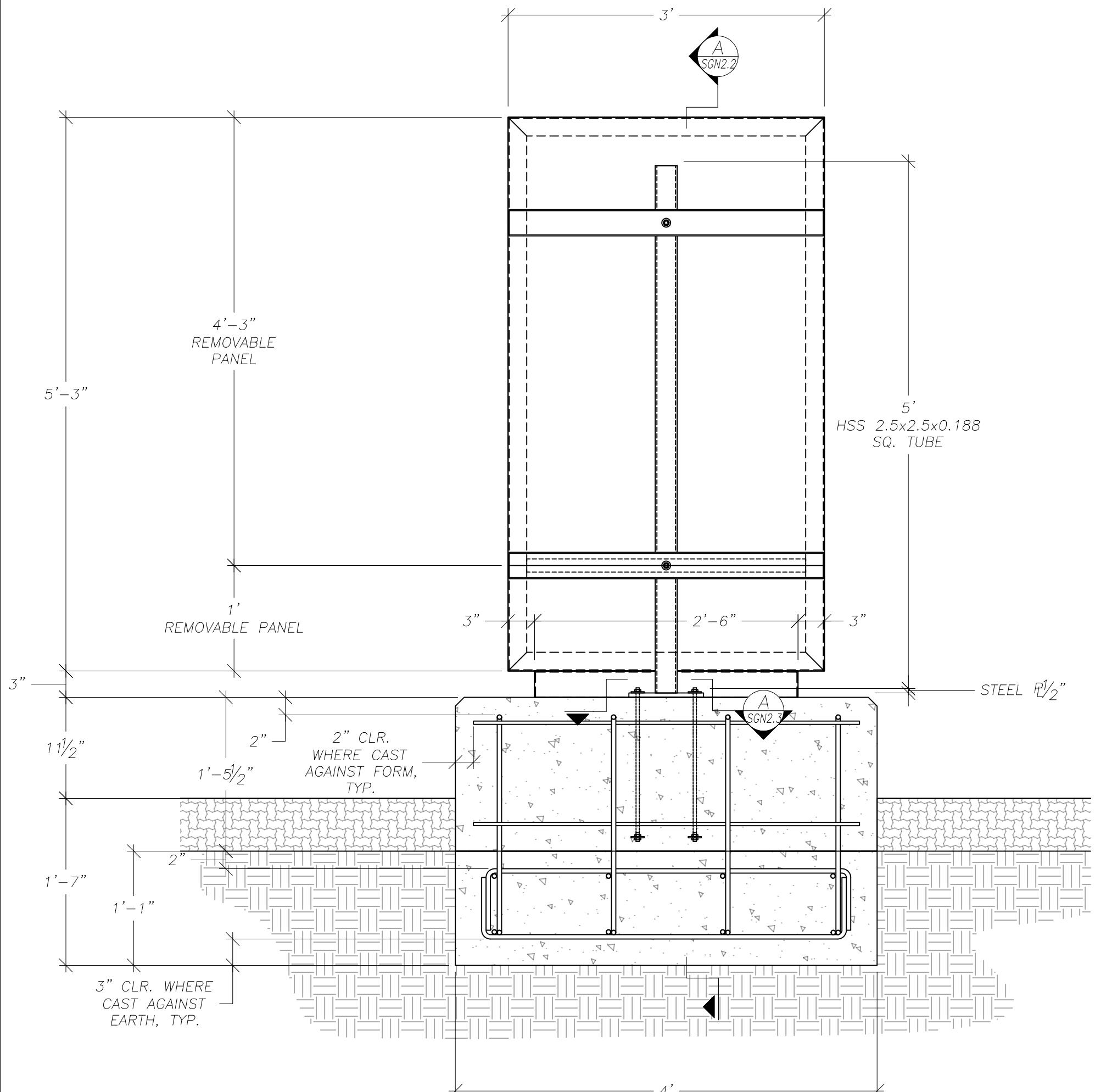
$$\gamma_v = 1 - \frac{1}{1 + \frac{2}{3} \sqrt{\frac{b_1}{b_2}}}$$

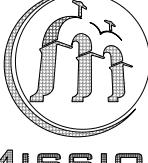
$$R = \frac{P_u b_1 b_2}{A_f}$$

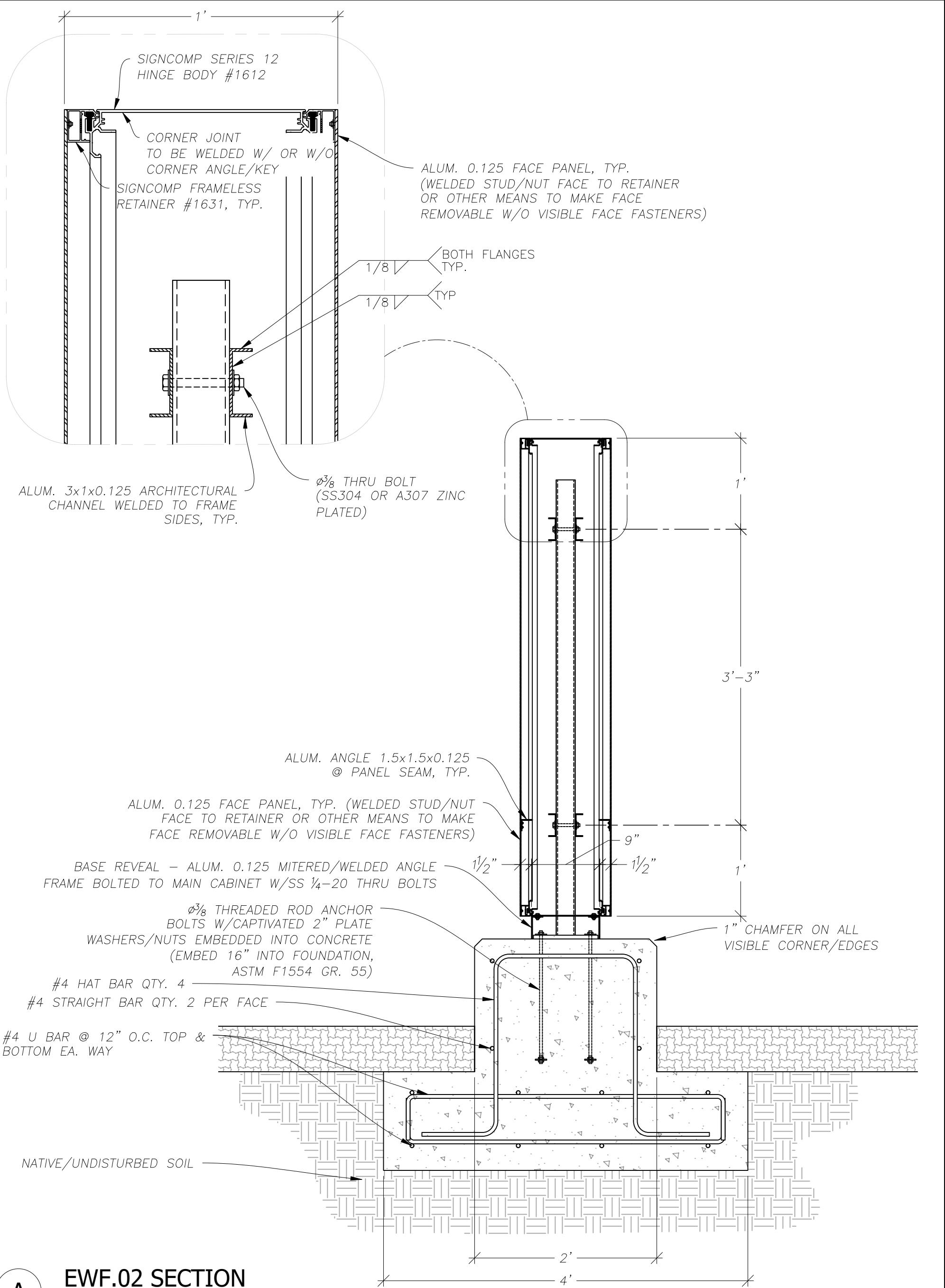
$$A_f = BL$$

$$\phi v_c (\text{psi}) = \phi (2 + y) \sqrt{f'_c}$$

$$y = \text{MIN} \left(2, \frac{4}{\beta_c}, 40 \frac{d}{b_0} \right)$$

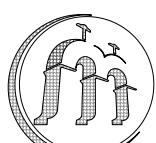

$$b_0 = \frac{AP}{d}, b_1 = (0.5c_1 + 0.5b_1 + d), b_2 = (0.5c_2 + 0.5b_2 + d)$$


Case	P _u	M _u	b ₁	b ₂	b ₀	γ_v	β_c	y	A _f	A _p	R	J	V _u (psi)	ϕV_c
1	2.1	0.0	12.0	12.0	0.3	0.4	1.0	2.0	16.0	2.8	0.1	0.5	4.9	150.0
2	2.1	2.8	12.0	12.0	0.3	0.4	1.0	2.0	16.0	2.8	0.1	0.5	5.0	150.0
3	1.6	2.8	12.0	12.0	0.3	0.4	1.0	2.0	16.0	2.8	0.1	0.5	3.8	150.0


[Satisfactory]

where $\phi = 0.75$, (ACI 318 21.2)

NOTE: PEDESTAL/PLINTH TO BE FORMED W/ BOARD FORM OR BOARD FORM LINER. PATTERN T.B.D.



<p>MISSION STRUCTURE ENGINEERING</p> <p>779 N. KATHLEEN LN. UNIT A ORANGE, CA 92867 INFO@MISSIONSTRUCTURE.COM 510.593.5022</p>	ISSUED FOR	REV	DATE	PROJECT INFORMATION Las Positas College 3000 Campus Hill Drive Livermore, CA 94551	PROJECT NUMBER DRAWING TITLE EWF.02 Elevation
	1st Submission	0	1/15/26		
<p>SEALS AND SIGNATURES</p> <p>LICENSED PROFESSIONAL ENGINEER MICHAEL CLARK BENNETT 090708 CIVIL STATE OF CALIFORNIA</p>	CLIENT INFORMATION	<p>SHANNON LEIGH STRATEGIC PLACEMAKING</p> <p>1455 Hays Street San Leandro, CA 94577 510.969.7870 info@shannonleigh.net</p>			
				DRAWING NUMBER SGN2.1	

EWF.02 SECTION

SCALE 1"=1"

MISSION STRUCTURE

779 N. KATHLEEN LN. UNIT A
ORANGE, CA 92867
INFO@MISSIONSTRUCTURE.COM

ISSUED FOR REV DATE
1st Submission 0 1/15/26

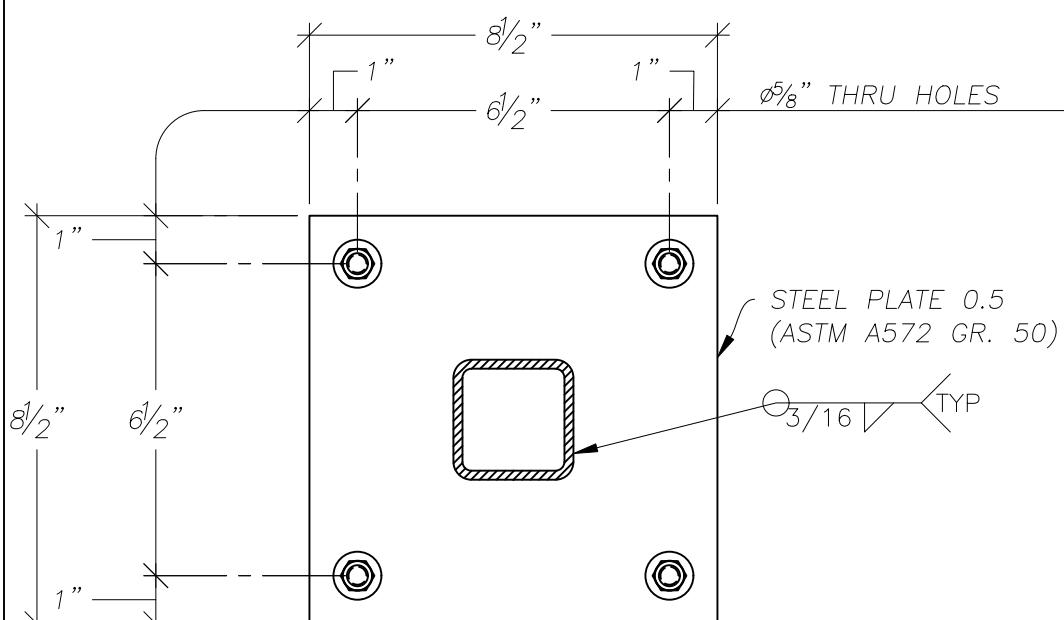
CLIENT INFORMATION

SHANNON LEIGH

STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

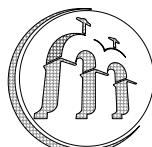
PROJECT INFORMATION
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551


PROJECT NUMBER

DRAWING TITLE

DRAWING NUMBER

SGN2.2



NOTE: MAY USE TRIANGULAR
STIFFENER/GUSSET FOR
IMPROVED FIT UP

BASEPLATE TYPE 1

SCALE: 3"=1'

NOTE: APPLY HEAVY EPOXY
PRIMER TO ALL SURFACES OF
BASEPLATES

MISSION

ENGINEERING
779 N. KATHLEEN LN. UNIT A
ORANGE, CA 92867
INFO@MISSIONSTRUCTURE.COM

ISSUED FOR REV DATE

CLIENT INFORMATION

SHANNON LEIGH

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

PROJECT INFORMATION
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

PROJECT NUMBER

1000

EWE 02

DRAWING NUMBER

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	1 / 5
Section	Freestanding EWF.02			Job No.

Freestanding Monument Sign

Project Location:
3000 Campus Hill Drive
Livermore, CA 94551

for

Shannon-Leigh Associates, LLC
1455 Hays Street
San Leandro, CA 94577

Scope of design:

Design of freestanding monument sign anchorage & foundation. Design includes load analysis, base plate/anchor bolt design & footing design. Design Criteria based on geotechnical report by Ninyo & Moore dated November 22, 2023.

Current Codes Which Shall Apply (As applicable to project):

CBC 2025, ASCE 7-22, AISC 360-22, ACI 318-19, AA ADM1 2020,

Dead Load

Total Sign Weight:

$$DL = \text{Total Weight} = 150.625 \text{ lbf}$$

Alum. Cabinet Weight:

$$DL_{\text{cab}} = \text{Weight.F14} = 95.625 \text{ lbf}$$

Seismic Load (Full Sign Mass)

Seismic Loads

Seismic Loads of Non-Building Structures

ASCE 7-16 Chapter 15

Seismic Base Shear:

$$V_B = C_s * W_p$$

$$R = 3$$

$$SDS = 1.36$$

$$I = 1.25$$

$$W_p = 150.625 \text{ lbf}$$

Seismic Response Coefficient:

$$C_s = \frac{SDS}{R} = 0.567$$

Seismic Base Shear:

$$V_B = C_s * W_p = 85.354 \text{ lbf}$$

Overstrength Factor, Ω (where applicable): OS = 1.75

Load Distribution

Per ASCE Chapter 29

Top of Sign Height:

$$h = s = 6.5 \text{ ft}$$

Cabinet Height:

$$h_c = \text{Weight.C2} = 5.5 \text{ ft}$$

Pedestal Height:

$$h_p = 1 \text{ ft}$$

Sign Height:

$$s = h_c + h_p = 6.5 \text{ ft}$$

Sign Width (Breadth):

$$B = \text{Weight.E2} = 3 \text{ ft}$$

Number of Posts:

$$n_p = 1$$

Gross Sign Area:

$$A_g = s * B = 19.5 \text{ ft}^2$$

Tributary Area (single post):

$$A_n = A_g = 19.5 \text{ ft}^2$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	2 / 5
Section	Freestanding EWF.02			Job No.

Moment Arm (@ baseplate):

$$arm_1 = 1.05 * \left(\frac{h_c}{2} \right) = 2.888 \text{ ft}$$

Moment Arm (@ top of ftg.):

$$arm_T = 1.05 * \left(\frac{s}{2} \right) + 0.5 \text{ ft} = 3.913 \text{ ft}$$

Wind Pressure:

Wind Load Section 1:

Wind Moment Section 1:

Wind Torsion:

Seismic Load on Section 1 (alum. cab.):

Seismic Load Section 1 w/ Over strength:

EQ Lateral Shear Force @ baseplate:

EQ Lateral Force Moment:

EQ Lateral Force w/ OS:

EQ Lateral Force Moment w/OS:

$$EQ_{s1} = EQ2.C_s * DL = 85.354 \text{ lbf}$$

$$EQ_{s1os} = EQ_{s1} * EQ2.OS = 149.370 \text{ lbf}$$

$$V_{1eq} = EQ_{s1} = 85.354 \text{ lbf}$$

$$M_{1eq} = V_{1eq} * arm_1 = 246.460 \text{ lbf * ft}$$

$$V_{1eqos} = EQ_{s1os} = 149.370 \text{ lbf}$$

$$M_{1eqos} = V_{1eqos} * arm_1 = 431.305 \text{ lbf * ft}$$

LRFD Load Combinations (as applicable-anchorage)

LC: 0.9 DL + 1.0 W

Dead Load:

$$DL_{min} = \frac{0.9 * (DL_{cab})}{n_p} = 86.063 \text{ lbf}$$

Shear Wind:

Moment Wind:

$$V_{1w1} = W_{11} = 487.5 \text{ lbf}$$

$$M_{1w1} = V_{1w1} * arm_1 = 1407.656 \text{ lbf * ft}$$

LC: 1.2 DL + 1.0 W

Dead Load:

$$DL_{max} = \frac{1.2 * (DL_{cab})}{n_p} = 114.75 \text{ lbf}$$

Shear Wind:

Moment Wind:

$$V_{1w2} = W_{11} = 487.5 \text{ lbf}$$

$$M_{1w2} = V_{1w2} * arm_1 = 1407.656 \text{ lbf * ft}$$

LC: 0.9 DL - 1.0 E_v + E_{mh}

Dead Load:

$$DL_{eqmin} = \frac{0.9 * (DL_{cab})}{n_p} = 86.063 \text{ lbf}$$

Vertical Seismic:

$$E_{v1} = \frac{-0.2 * EQ2.SDS * (DL_{cab})}{n_p} = -26.01 \text{ lbf}$$

Shear EQ:

$$V_{1eq1} = \frac{EQ_{s1os}}{n_p} = 149.370 \text{ lbf}$$

Moment EQ:

$$M_{1eq1} = \left(\frac{EQ_{s1os}}{n_p} \right) * arm_1 = 431.305 \text{ lbf * ft}$$

LC: 1.2 DL + 1.0 E_v + E_{mh}

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	3 / 5
Section	Freestanding EWF.02			Job No.

Dead Load:

$$DL_{1eqmax} = \frac{1.2 * (DL_{cab})}{n_p} = 114.75 \text{ lbf}$$

Vertical Seismic:

$$E_{v2} = \frac{0.2 * EQ2.SDS * (DL_{cab})}{n_p} = 26.01 \text{ lbf}$$

Shear EQ:

$$V_{eq2} = \frac{EQ_{s1os}}{n_p} = 149.370 \text{ lbf}$$

Moment EQ:

$$M_{eq2} = \frac{EQ_{s1os} * arm_1}{n_p} = 431.305 \text{ lbf * ft}$$

ASD Load Combinations

(Note: Omit axial loads on post-no restoring moment weld design)

LC: DL + 0.6 W

LC: DL + 0.7 (E_v + E_{mh})

Convert to ASD/service level loads

Vertical Load, ASD:

$$DL_{S1} = DL = 150.625 \text{ lbf}$$

Wind Pressure, ASD:

$$p_{wasd} = p_w * 0.6 = 15 \text{ psf}$$

Wind Load, ASD:

$$W_{lasd} = p_{wasd} * A_n = 292.5 \text{ lbf}$$

Wind Force Moment, ASD:

$$M_{wasd} = arm_1 * W_{lasd} = 844.594 \text{ ft * lbf}$$

Wind Torsion, ASD:

$$T_{ASD} = T_w * 0.6 = 175.5 \text{ ft * lbf}$$

Max. Vertical Load, ASD:

$$DL_{eqasd} = \frac{DL_{S1} + 0.7 * 0.2 * EQ2.SDS * DL_{S1}}{n_p} = 179.304 \text{ lbf}$$

Seismic Load, ASD:

$$EQ_{asd} = \frac{EQ2.V_B * 0.7}{n_p} = 59.748 \text{ lbf}$$

Seismic Load w/ OS, ASD:

$$EQ_{osasd} = EQ_{asd} * EQ2.OS = 104.559 \text{ lbf}$$

Seismic Force Moment, ASD:

$$M_{eqasd} = arm_1 * EQ_{asd} = 172.522 \text{ ft * lbf}$$

Seismic Force Moment w/ OS, ASD:

$$M_{eqasdos} = EQ_{osasd} * arm_1 = 301.914 \text{ lbf * ft}$$

Weld Connection From Post to Base Plate

Tube Depth:

$$d_{tube} = 2 \text{ in}$$

Tube Breadth:

$$b_{tube} = 2 \text{ in}$$

Tube Wall Thickness:

$$t_{tube} = 0.188 \text{ in}$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	4 / 5
Section	Freestanding EWF.02			Job No.

Weld Line Section Modulus:

$$S_w = d_{tube} * b_{tube} + \frac{d_{tube}^2}{3} = 5.333 \text{ in}^2$$

Weld Line Area:

$$A_w = d_{tube} * 2 + b_{tube} * 2 = 8 \text{ in}$$

Fillet Weld Design (AISC 360 Section J2.4 or ADM J.2)

Weld to resist loads V & M.

Material = "Steel"

Weld Group Configuration:

Type = "sq 2x2x0.188"

Input Weld Shear Load:

$$V = W_{lasd} = 292.5 \text{ lbf}$$

Input Weld Moment Load:

$$M = M_{wasd} = 844.594 \text{ ft * lbf}$$

Weld Line Section Modulus (bending):

$$S_w = \text{Report1}.S_w = 5.333 \text{ in}^2$$

Weld Line Section Modulus (shear):

$$A_w = \text{Report1}.A_w = 8 \text{ in}$$

Required Strength:

$$R = \sqrt{\left(\frac{V}{A_w}\right)^2 + \left(\frac{M}{S_w}\right)^2} = 1900.7 \frac{\text{lb}}{\text{in}}$$

Weld Electrode Tensile Strength:

$$f_u = 70 \text{ ksi}$$

Weld Factor of Safety:

$$\Omega_w = 2$$

$$R_n = \begin{cases} \frac{0.707 * f_u * 0.6 * \left(\frac{1 \text{ in}}{16}\right)}{\Omega_w} & \text{if Material == "Steel"} \\ \frac{0.707 * 0.85 * f_u * 0.6 * \left(\frac{1 \text{ in}}{16}\right)}{\Omega_w} & \text{otherwise} \end{cases} = 927.9 \frac{\text{lb}}{\text{in}}$$

Required Size of Weld:

$$a_{req} = \text{RoundUp}\left(\frac{R}{R_n}\right) = 3/16" \text{ Weld Leg Size}$$

Foundation Loads

Spread Footing Foundation

Nominal loads for allowable capacities per geotechnical report. Seismic Loads to have omega/overstrength applied (cantilever foundation system). Design provided in design worksheet to follow.

Width of Footing:

$$W_{ftg} = 4 \text{ ft}$$

Length of Footing:

$$l_{ftg} = 4 \text{ ft}$$

Width of Pedestal:

$$W_{ped} = 2 \text{ ft}$$

Length of Pedestal:

$$l_{ped} = 4 \text{ ft}$$

Height of Pedestal:

$$H_{ped} = 18 \text{ in}$$

Weight of Concrete Pedestal:

$$W_{ped} = W_{ped} * l_{ped} * H_{ped} * 150 \text{ pcf} = 1800 \text{ lbf}$$

LC: 0.9 DL + W

(nominal values for foundation software shown below)

Vertical Force:

$$A_1 = 0.9 * (DL + W_{ped}) = 1755.563 \text{ lbf}$$

Horizontal Force:

$$P_1 = (B * s * p_w) = 487.5 \text{ lbf}$$

Moment:

$$M_1 = P_1 * arm_T = 1907.344 \text{ lbf * ft}$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	5 / 5
Section	Freestanding EWF.02			Job No.

$$LC: 0.9 \text{ DL} + (E_v + E_{mh})$$

(nominal values for foundation software shown below)

DL Vertical Force:

$$A_2 = 0.9 * (DL + Wt_{ped}) = 1755.563 \text{ lbf}$$

EQ Vertical Force:

$$A_3 = (-0.2 * EQ2.SDS * (DL + Wt_{ped})) = -530.57 \text{ lbf}$$

Horizontal Forces:

Sign Cabinet:

$$P_2 = EQ2.V_B * EQ2.OS = 149.370 \text{ lbf}$$

Sign Cabinet moment arm:

$$a_2 = arm_T = 3.913 \text{ ft}$$

Sign Cabinet moment:

$$M_2 = P_2 * a_2 = 584.409 \text{ lbf * ft}$$

Combined EQ Axial:

$$A_{eq} = A_2 + A_3 = 1224.992 \text{ lbf}$$

Combined EQ Shear:

$$V_{eq} = P_2 = 149.370 \text{ lbf}$$

Combined EQ Moment:

$$M_{eq} = M_2 = 584.409 \text{ lbf * ft}$$

Weight Takeoff

Component	Height: 5.5 ft		Width: 3 ft		Weight
	Unit Wt	Unit Qty	Wt	Qty	
Skin	2 psf	16.5 ft ²	33 lbf	2	66 lbf
Post	10 plf	5.5 ft	55 lbf	1	55 lbf
Channel Extrusion	1.5 plf	17 ft	25.5 lbf	1	25.5 lbf
Misc Framing/Stiffeners	0.25 psf	16.5 ft ²	4.125 lbf	1	4.125 lbf

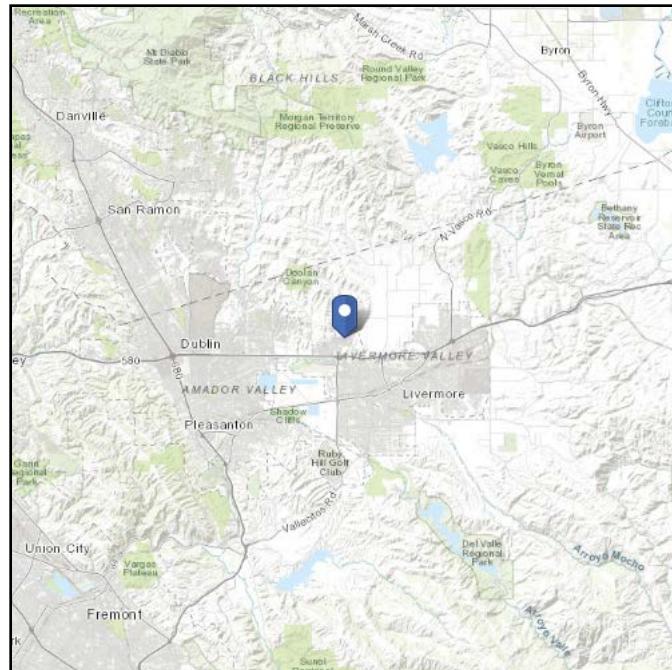
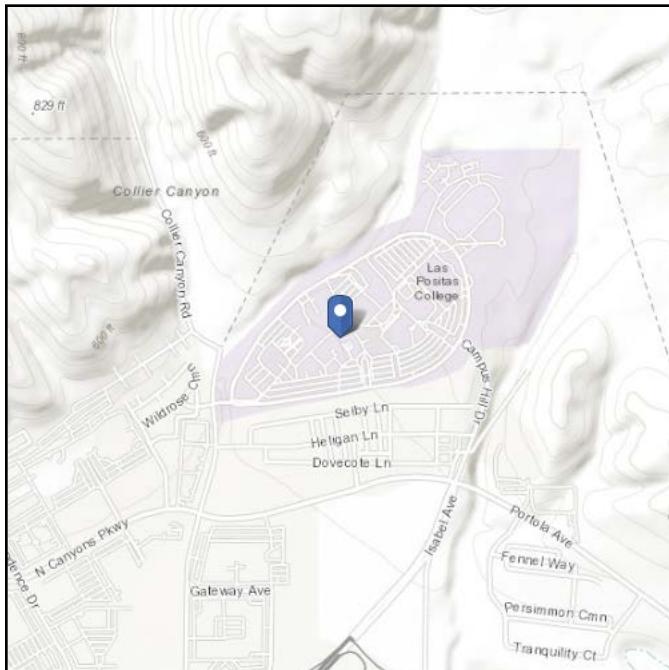
Cabinet Wt.: 95.63 lbf

Total: 150.6 lbf

ASCE Hazards Report

Address:

Las Positas College - 3000
Campus Hill Drive
Livermore,



Standard: ASCE/SEI 7-22

Risk Category: III

Soil Class: D - Stiff Soil

Latitude: 37.710873

Longitude: -121.80058

Elevation: 480.38484203241944 ft
(NAVD 88)

Wind

Results:

Wind Speed	99 Vmph
10-year MRI	64 Vmph
25-year MRI	70 Vmph
50-year MRI	75 Vmph
100-year MRI	79 Vmph
300-year MRI	87 Vmph
700-year MRI	93 Vmph
1,700-year MRI	99 Vmph
3,000-year MRI	103 Vmph
10,000-year MRI	113 Vmph
100,000-year MRI	129 Vmph
1,000,000-year MRI	147 Vmph

Data Source:

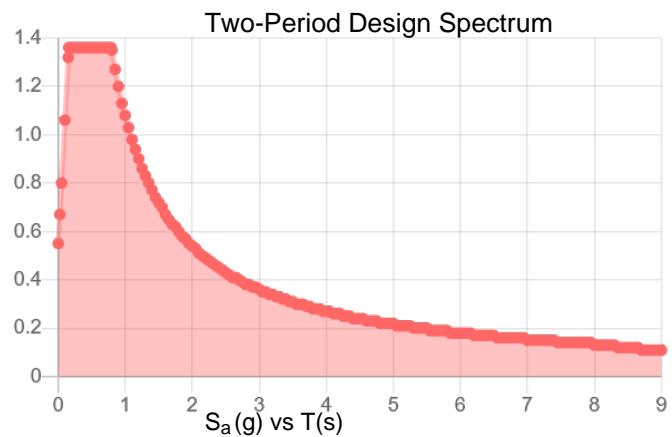
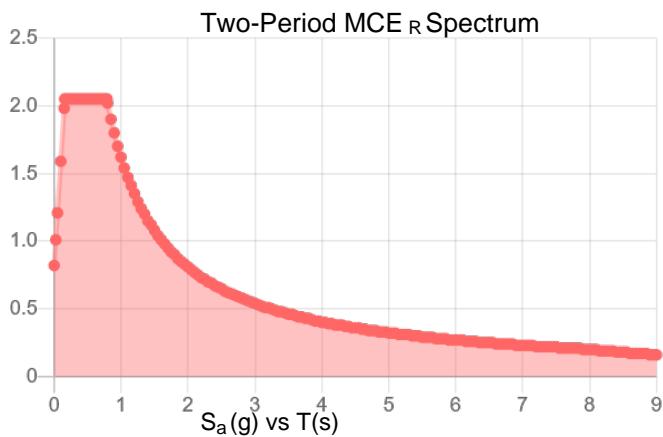
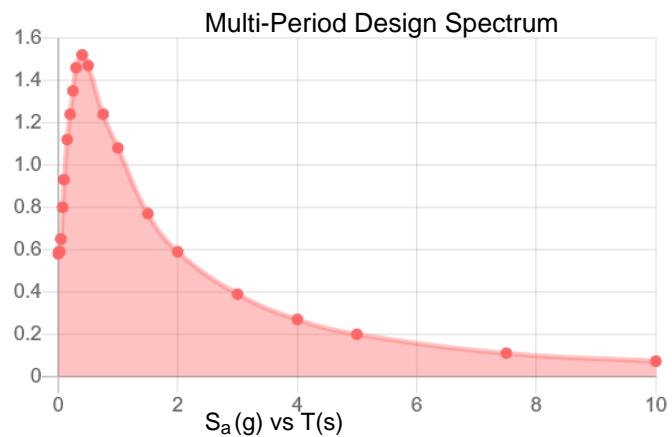
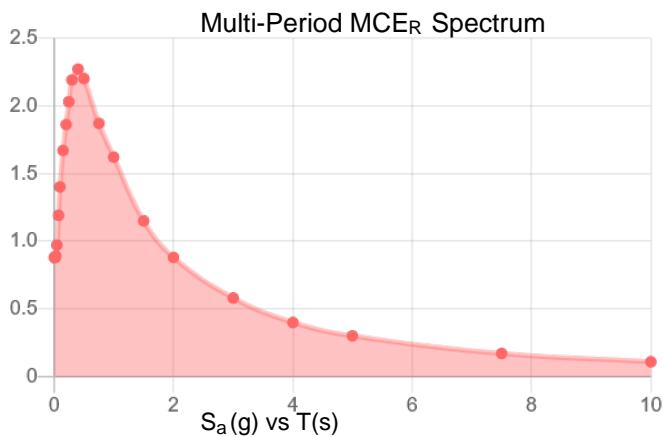
ASCE/SEI 7-22, Fig. 26.5-1C and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed:

Mon Nov 24 2025

AMERICAN SOCIETY OF CIVIL ENGINEERS

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-22 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years). Values for 10-year MRI, 25-year MRI, 50-year MRI and 100-year MRI are Service Level wind speeds, all other wind speeds are Ultimate wind speeds.





Site is not in a hurricane-prone region as defined in ASCE/SEI 7-22 Section 26.2.

Site Soil Class: D - Stiff Soil

Results:

PGA _M :	0.73	T _L :	8
S _{MS} :	2.05	S _S :	2.13
S _{M1} :	1.62	S ₁ :	0.81
S _{DS} :	1.36	V _{S30} :	260
S _{D1} :	1.08		

Seismic Design Category: E

MCE_R Vertical Response Spectrum
Vertical ground motion data has not yet been made available by USGS.

Design Vertical Response Spectrum
Vertical ground motion data has not yet been made available by USGS.

Data Accessed: **Mon Nov 24 2025**

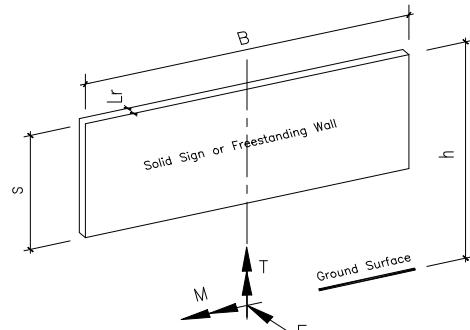
Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-22 and ASCE/SEI 7-22 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-22 Ch. 21 are available from USGS.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.



Wind Analysis for Freestanding Wall & Sign Based on ASCE 7-22

Monument Sign Wind Pressure

INPUT DATA

Exposure category (B, C or D)	=	C
Importance factor, 1.0 only, (Table 1.5-2)	I _w =	1.00
Basic wind speed (ASCE 7 26.5.1)	V =	99 mph, (159.32 kph)
Topographic factor (26.8 & Table 26.8-1)	K _{zt} =	1 Flat
Height of top	h =	11 ft, (3.35 m)
Vertical dimension (for wall, s = h)	s =	11 ft, (3.35 m)
Horizontal dimension	B =	4 ft, (1.22 m)
Dimension of return corner	L _r =	0 ft, (0.00 m)

DESIGN SUMMARY

Max horizontal wind pressure	p =	25 psf, (1177 N/m ²)
Max total horizontal force at centroid of base	F =	1.08 kips, (5 kN)
Max bending moment at centroid of base	M =	6.54 ft-kips, (9 kN-m)
Max torsion at centroid of base	T =	0.87 ft-kips, (1 kN-m)

ANALYSIS

Velocity pressure

$$q_h K_d = (0.00256 K_z K_{zt} K_e V^2) K_d = 18.13 \text{ psf}$$

where: q_h = velocity pressure at mean roof height, h . (Eq. 26.10-1 page 277), $K_e = 1.00$, (Tab. 26.9-1 page 275)

K_z = velocity pressure exposure coefficient evaluated at height, h , (Tab. 26.10-1, pg 277) = 0.85

K_d = wind directionality factor. (Tab. 26.6-1, page 274) = 0.85

h = height of top = 11.00 ft

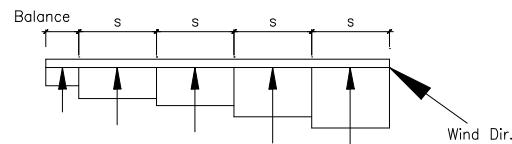
Wind Force Case A: resultant force through the geometric center (Sec. 29.3.1)

p = $q_h K_d G C_N$	=	25 psf
F = p A _s	=	1.08 kips
M = F (h - 0.5s) for sign, F (0.55h) for wall	=	6.54 ft-kips
T =	=	0.00 ft-kips
where: G = gust effect factor. (Sec. 26.9)	=	0.85
C _f = net force coefficient. (Fig. 29.3-1, page 301)	=	1.60
A _s = B s	=	44.0 ft ²

Wind Force Case B: resultant force at 0.2 B offset of the geometric center (Sec. 29.3.1)

p = Case A	=	25 psf
F = Case A	=	1.08 kips
M = Case A	=	6.54 ft-kips
T = 0.2 F B	=	0.87 ft-kips

Wind Force Case C: resultant force different at each region (Sec. 29.4.1)


$$p = q_h G C_f$$

$$F = \sum p A_s$$

$$M = \sum [F (h - 0.5s) \text{ for sign, } F (0.55h) \text{ for wall}]$$

$$T = \sum T_s$$

Distance (ft)	C _f (Fig. 29.3-1)	P _i (psf)	A _{si} (ft ²)	F _i (kips)	M _i (ft-kips)	T _i (ft-kips)
4.0	1.800	28	44	1.22	7.38	0.00
Σ	1.200	18	0	0.00	7.38	0.00

<== Case C may not be considered, footnote 3 of Fig. 6-20

INPUT DATA & DESIGN SUMMARY

MEMBER SHAPE (Tube or Pipe) & SIZE

HSS2X2X3/16

<== Tube

STEEL YIELD STRESS

$F_y = 46$ ksi, (317 MPa)

TORSIONAL FORCE

$T_r = 0.293$ ft-kips, (0 kN-m), ASD

AXIAL COMPRESSION FORCE

$P_r = 0.151$ kips, (1 kN), ASD

STRONG AXIS EFFECTIVE LENGTH

$kL_x = 10$ ft, (3.05 m)

WEAK AXIS EFFECTIVE LENGTH

$kL_y = 10$ ft, (3.05 m)

STRONG AXIS BENDING MOMENT

$M_{rx} = 0.845$ ft-kips, (1 kN-m), ASD

STRONG AXIS BENDING UNBRACED LENGTH

$L_b = 5.5$ ft, (1.68 m), (AISC 360 F2.2.c)

STRONG DIRECTION SHEAR LOAD, ASD

$V_{strong} = 0.293$ kips, (1 kN)

WEAK AXIS BENDING MOMENT

$M_{ry} = 0$ ft-kips, (0 kN-m), ASD

WEAK DIRECTION SHEAR LOAD, ASD

$V_{weak} = 0$ kips, (0 kN)

THE DESIGN IS ADEQUATE.

ANALYSIS

CHECK TORSIONAL CAPACITY (AISC 360 H3.1)

$$T_c = \frac{1}{\Omega_T} T_n = \frac{1}{\Omega_T} \begin{cases} \left[0.6F_y, \text{ for } \frac{h}{t} \leq 2.45\sqrt{\frac{E}{F_y}} \right] \\ \left[2(B-t)(H-t) - 4.5(4-\pi)t^3 \right] \left[0.6F_y 2.45\sqrt{\frac{E}{F_y}} \frac{t}{h}, \text{ for } \frac{h}{t} \leq 3.07\sqrt{\frac{E}{F_y}} \right], \text{ for HSS Tube} \\ \left[0.458 \frac{E\pi^2}{(h/t)^2}, \text{ for } \frac{h}{t} \leq 260 \right] \end{cases} = 1.7 \text{ ft-kips}$$

$$\frac{\pi(D-t)^2 t}{2} \text{ Max} \left[\frac{1.23E}{\sqrt{L} \left(\frac{D}{t} \right)^{(5/4)}}, \frac{0.60E}{\left(\frac{D}{t} \right)^{(3/2)}} \right], \text{ for HSS Pipe} > T_r \text{ [Satisfactory]}$$

Where $B = 2.00$ $H = 2.00$ $h = 1.44$ $t = 0.19$ $D = 29000$ $E = 29000$

$\Omega_T = 1.67$, ASD

CHECK COMBINED COMPRESSION AND BENDING CAPACITY (AISC 360 H1)

$$\begin{cases} \frac{P_r}{P_c} + 8 \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right), \text{ for } \frac{P_r}{P_c} \geq 0.2 \\ \frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right), \text{ for } \frac{P_r}{P_c} < 0.2 \end{cases} = 0.47 < 1.3 \text{ [Satisfactory]}$$

(2021 IBC, 1605.3.2)

Where $P_c = P_n / \Omega_c = 11 / 1.67 = 6.69$ kips, (AISC 360 Chapter E)

> P_r [Satisfactory]

$M_{cx} = M_n / \Omega_b = 3.06 / 1.67 = 1.83$ ft-kips, (AISC 360 Chapter F)

> M_{rx} [Satisfactory]

$M_{cy} = M_n / \Omega_b = 3.06 / 1.67 = 1.83$ ft-kips, (AISC 360 Chapter F)

> M_{ry} [Satisfactory]

CHECK SHEAR CAPACITY (AISC 360 G2)

$V_{n,strong} / \Omega_v = 13.8 / 1.67 = 8.3$ kips > $V_{strong} = 0.3$ kips [Satisfactory]

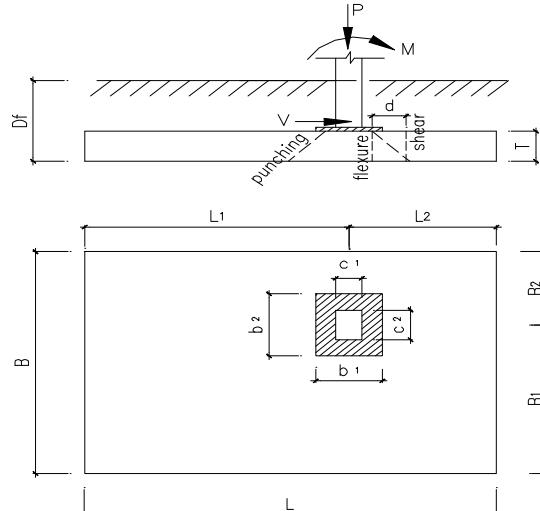
$V_{n,weak} / \Omega_v = 13.8 / 1.67 = 8.3$ kips > $V_{weak} = 0.0$ kips [Satisfactory]

CHECK COMBINED TORSION, SHEAR, COMPRESSION, AND BENDING CAPACITY (AISC 360 H3.2)

$$\begin{cases} \frac{P_r}{P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) + \left[\text{Max} \left(\frac{V_{strong}}{V_{c,strong}}, \frac{V_{weak}}{V_{c,weak}} \right) + \frac{T_r}{T_c} \right]^2, \text{ for } \frac{T_r}{T_c} > 0.2 \\ \text{Torsion Neglected, for } \frac{T_r}{T_c} \leq 0.2 \end{cases} = 0.0 < 1.3 \text{ [Satisfactory]}$$

(2021 IBC, 1605.3.2)

Eccentric Footing Design Based on ACI 318-19


EWF.02 0.9DL+W Spread Ftg.

INPUT DATA

COLUMN WIDTH	c_1	=	2	in
COLUMN DEPTH	c_2	=	2	in
BASE PLATE WIDTH	b_1	=	5	in
BASE PLATE DEPTH	b_2	=	5	in
FOOTING CONCRETE STRENGTH	f_c'	=	2.5	ksi
REBAR YIELD STRESS	f_y	=	60	ksi
AXIAL DEAD LOAD	P_{DL}	=	1.755	k
AXIAL LIVE LOAD	P_{LL}	=	0	k
LATERAL LOAD (0=WIND, 1=SEISMIC)		=	0	Wind, SD
WIND AXIAL LOAD	P_{LAT}	=	0	k, SD
WIND MOMENT LOAD	M_{LAT}	=	1.908	ft-k, SD
WIND SHEAR LOAD	V_{LAT}	=	0.488	k, SD
SURCHARGE	q_s	=	0	ksf
SOIL WEIGHT	w_s	=	0.11	kcf
FOOTING EMBEDMENT DEPTH	D_f	=	1.5	ft
FOOTING THICKNESS	T	=	12	in
ALLOWABLE SOIL PRESSURE	Q_a	=	2	ksf
FOOTING WIDTH	B_1	=	2	ft
	B_2	=	2	ft
FOOTING LENGTH	L_1	=	2	ft
	L_2	=	2	ft
REINFORCING SIZE		#	4	

DESIGN SUMMARY

FOOTING WIDTH	B	=	4.00	ft
FOOTING LENGTH	L	=	4.00	ft
FOOTING THICKNESS	T	=	12	in
LONGITUDINAL REINF., TOP	1 # 4			
LONGITUDINAL REINF., BOT.	4 # 4 @ 14 in o.c.			
TRANSVERSE REINF., BOT.	4 # 4 @ 14 in o.c.			

THE FOOTING DESIGN IS ADEQUATE.

ANALYSIS

DESIGN LOADS AT TOP OF FOOTING (IBC 1605.2 & ACI 318 5.3)

CASE 1:	DL + LL	P	=	2	kips	1.2 DL + 1.6 LL	P _u	=	2	kips
		M	=	0	ft-kips		M _u	=	0	ft-kips
		e	=	0.0	ft, fr cl ftg		e _u	=	0.0	ft, fr cl ftg
CASE 2:	DL + LL + 0.6(1.3) W	P	=	2	kips	1.2 DL + LL + 1.0 W	P _u	=	2	kips
		M	=	2	ft-kips		M _u	=	2	ft-kips
		V	=	0	kips		V _u	=	0	kips
CASE 3:	DL + LL + 0.6(0.65) W	e	=	1.0	ft, fr cl ftg		e _u	=	0.9	ft, fr cl ftg
		P	=	2	kips	0.9 DL+ 1.0 W	P _u	=	2	kips
		M	=	1	ft-kips		M _u	=	2	ft-kips
		V	=	0	kips		V _u	=	0	kips
		e	=	0.6	ft, fr cl ftg		e _u	=	1.2	ft, fr cl ftg

CHECK OVERTURNING FACTOR (2021 IBC 1605.2.1, 1808.3.1, & ASCE 7-22 12.13.4)

$M_R / M_O = 4.2 > F = 1.0 / 0.9 = 1.11$ [Satisfactory]

Where $M_O = M_{LAT} + V_{LAT} T - P_{LAT} L_2 =$ 2 k-ft

$$P_{ftq} = (0.15 \text{ kcf}) T B L = 2.40 \text{ k, footing weight}$$

$$P_{soil} = w_s (D_f - T) B L = 0.88 \text{ k, soil weight}$$

$$M_R = P_{DL}L_2 + 0.5 (P_{ftq} + P_{soil}) L = 10 \text{ k-ft}$$

FOR REVERSED LATERAL LOADS,

$M_R / M_O = 3.8 > F = 1.0 / 0.9$ [Satisfactory]

Where $M_O = M_{LAT} + V_{LAT} D_f - P_{LAT} L_1 = 3 \text{ k-ft}$

$$M_R = P_{DL}L_1 + 0.5 (P_{ftq} + P_{soil}) L = 10 \text{ k-ft}$$

CHECK SLIDING (2021 IBC 1807.2.3)

1.5 (V_{Lat, ASD}) = 0.4392 kips < $\mu \Sigma W$ = 1.66 kips [Satisfactory]
Where μ = 0.4

CHECK SOIL BEARING CAPACITY (ACI 318 13.3.1.1)

Service Loads	CASE 1	CASE 2	CASE 3	
P	1.8	1.8	1.8	
e	0.0	1.2	0.8	ft (from center of footing)
q _s B L	0.0	0	0.0	k, (surcharge load)
(0.15-w _s)T B L	0.6	0.6	0.4	k, (footing increased)
Σ P	2.4	2.4	2.1	k
e _L	0.0 < L/6	0.9 > L/6	0.6 < L/6	ft
e _B	0.0 < B/6	0.0 < B/6	0.0 < B/6	ft
q _L	0.6	1.4	1.0	k / ft
q _{max}	0.1	0.4	0.3	ksf
q _{allow}	2.0	2.7	2.7	ksf

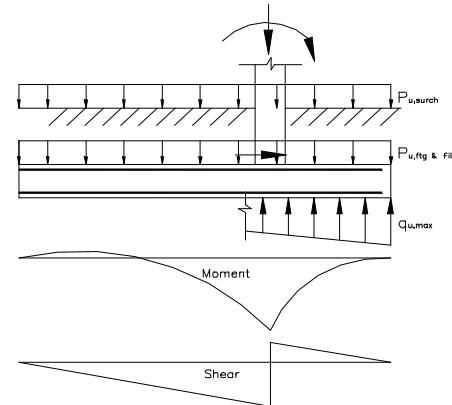
Where

$$q_L = \begin{cases} \frac{(\Sigma P) \left(1 + \frac{6e_L}{L}\right)}{L}, & \text{for } e_L \leq \frac{L}{6} \\ \frac{2(\Sigma P)}{3(0.5L - e_L)}, & \text{for } e_L > \frac{L}{6} \end{cases}$$

$$q_{MAX} = \begin{cases} \frac{q_L \left(1 + \frac{6e_B}{B}\right)}{B}, & \text{for } e_B \leq \frac{B}{6} \\ \frac{2q_L}{3(0.5B - e_B)}, & \text{for } e_B > \frac{B}{6} \end{cases}$$

[Satisfactory]

DESIGN FLEXURE & CHECK FLEXURE SHEAR


(ACI 318 13, 21, & 22)

$$q_{u,MAX} = \begin{cases} \frac{(\Sigma P_u) \left(1 + \frac{6e_u}{L}\right)}{BL}, & \text{for } e_u \leq \frac{L}{6} \\ \frac{2(\Sigma P_u)}{3B(0.5L - e_u)}, & \text{for } e_u > \frac{L}{6} \end{cases}$$

$$\rho_{MAX} = \frac{0.85 \beta_{1f} f_c}{f_y} \frac{\varepsilon_u}{\varepsilon_u + \varepsilon_t}$$

$$\rho = \frac{0.85 f_c \left(1 - \sqrt{1 - \frac{M_u}{0.383bd^2 f_c}}\right)}{f_y}$$

$$\rho_{MIN} = MIN \left(0.0018 \frac{T}{d}, \frac{4}{3} \rho \right)$$

FACTORED SOIL PRESSURE

Factored Loads	CASE 1	CASE 2	CASE 3	
P _u	2.1	2.1	1.6	k
e _u	0.0	1.1	1.5	ft
γ q _s B L	0.0	0.0	0.0	k, (factored surcharge load)
γ[0.15T + w _s (D _f - T)]BL	3.9	3.9	3.0	k, (factored footing & backfill loads)
Σ P _u	6.0	6.0	4.5	k
e _u	0.0 < L/6	0.4 < L/6	0.5 < L/6	ft
q _{u, max}	0.378	0.602	0.508	ksf

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 1

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.50	1.00	1.50	1.85	2.15	2.50	3.00	3.50	4.00
M _{u,col} (ft-k)	0	0	0	0	0	-0.3	-1.1	-2.1	-3.2	-4.2
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	2.1	2.1	2.1	2.1	2.1
P _{u,surch} (klf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (klf)	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
M _{u,fg & fill} (ft-k)	0	-0.1	-0.5	-1.1	-1.7	-2.3	-3.1	-4.4	-6.0	-7.9
V _{u,fg & fill} (k)	0	0.5	1.0	1.5	1.8	2.1	2.5	3.0	3.4	3.9
q _{u,soil} (ksf)	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38
M _{u,soil} (ft-k)	0	0.2	0.8	1.7	2.6	3.5	4.7	6.8	9.3	12.1
V _{u,soil} (k)	0	-0.8	-1.5	-2.3	-2.8	-3.2	-3.8	-4.5	-5.3	-6.0
Σ M _u (ft-k)	0	0.1	0.3	0.6	0.9	0.9	0.6	0.3	0.1	0
Σ V _u (kips)	0	-0.3	-0.5	-0.8	-1.0	1.0	0.8	0.5	0.3	0

(cont'd)

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 2

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.50	1.00	1.50	1.85	2.15	2.50	3.00	3.50	4.00
M _{u,col} (ft-k)	0	0	0	0	0	2.1	1.3	0.3	-0.8	-1.8
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	2.1	2.1	2.1	2.1	2.1
P _{u,surch} (kif)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (kif)	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
M _{u,fg & fill} (ft-k)	0	-0.1	-0.5	-1.1	-1.7	-2.3	-3.1	-4.4	-6.0	-7.9
V _{u,fg & fill} (k)	0	0.5	1.0	1.5	1.8	2.1	2.5	3.0	3.4	3.9
q _{u,soil} (ksf)	0.15	0.21	0.27	0.32	0.36	0.39	0.43	0.49	0.55	0.60
M _{u,soil} (ft-k)	0	0.1	0.4	0.9	1.5	2.1	3.1	4.8	7.0	9.7
V _{u,soil} (k)	0	-0.4	-0.8	-1.4	-1.9	-2.3	-2.9	-3.9	-4.9	-6.0
ΣM_u (ft-k)	0	0.0	-0.1	-0.2	-0.2	2.0	1.4	0.6	0.2	0
ΣV_u (kips)	0	0.1	0.1	0.1	-0.1	1.9	1.6	1.2	0.7	0

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 3

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.50	1.00	1.50	1.85	2.15	2.50	3.00	3.50	4.00
M _{u,col} (ft-k)	0	0	0	0	0	2.2	1.6	0.8	0.0	-0.8
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	1.6	1.6	1.6	1.6	1.6
P _{u,surch} (kif)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (kif)	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
M _{u,fg & fill} (ft-k)	0	-0.1	-0.4	-0.8	-1.3	-1.7	-2.3	-3.3	-4.5	-5.9
V _{u,fg & fill} (k)	0	0.4	0.7	1.1	1.4	1.6	1.8	2.2	2.6	3.0
q _{u,soil} (ksf)	0.06	0.11	0.17	0.23	0.27	0.30	0.34	0.40	0.45	0.51
M _{u,soil} (ft-k)	0	0.0	0.2	0.5	0.9	1.3	1.9	3.1	4.6	6.7
V _{u,soil} (k)	0	-0.2	-0.5	-0.9	-1.2	-1.5	-2.0	-2.7	-3.6	-4.5
ΣM_u (ft-k)	0	-0.1	-0.2	-0.3	-0.4	1.7	1.2	0.6	0.2	0
ΣV_u (kips)	0	0.2	0.3	0.3	0.2	1.6	1.4	1.1	0.6	0

DESIGN FLEXURE

Location	M _{u,max}	d (in)	P _{min}	P _{reqD}	P _{max}	s _{max}	use	P _{provD}
Top Longitudinal	0.4	ft-k	9.75	0.0000	0.0000	no limit	1 # 4	0.0004
Bottom Longitudinal	2.0	ft-k	8.75	0.0002	0.0001	0.0129	4 # 4 @ 14 in o.c.	0.0019
Bottom Transverse	0	ft-k / ft	8.50	0.0001	0.0001	0.0129	4 # 4 @ 14 in o.c.	0.0020

[Satisfactory]

CHECK FLEXURE SHEAR

Direction	V _{u,max}	$\phi V_c = 2 \phi b d (f'_c)^{0.5}$	check V _u < ϕV_c
Longitudinal	1.9 k	32 k	[Satisfactory]
Transverse	0.2 k / ft	8 k / ft	[Satisfactory]

CHECK PUNCHING SHEAR (ACI 318 13.2.7.2, 22.6.4.1, 22.6.4.3, & 8.4.2.3)

$$v_{uL} (\text{psi}) = \frac{P_u - R}{AP} + \frac{0.5\gamma_v M_{ub} b_1}{J}$$

$$AP = 2(b_1 + b_2)d$$

$$J = \left(\frac{db_1^3}{6} \right) \left[1 + \left(\frac{d}{b_1} \right)^2 + 3 \left(\frac{b_2}{b_1} \right) \right]$$

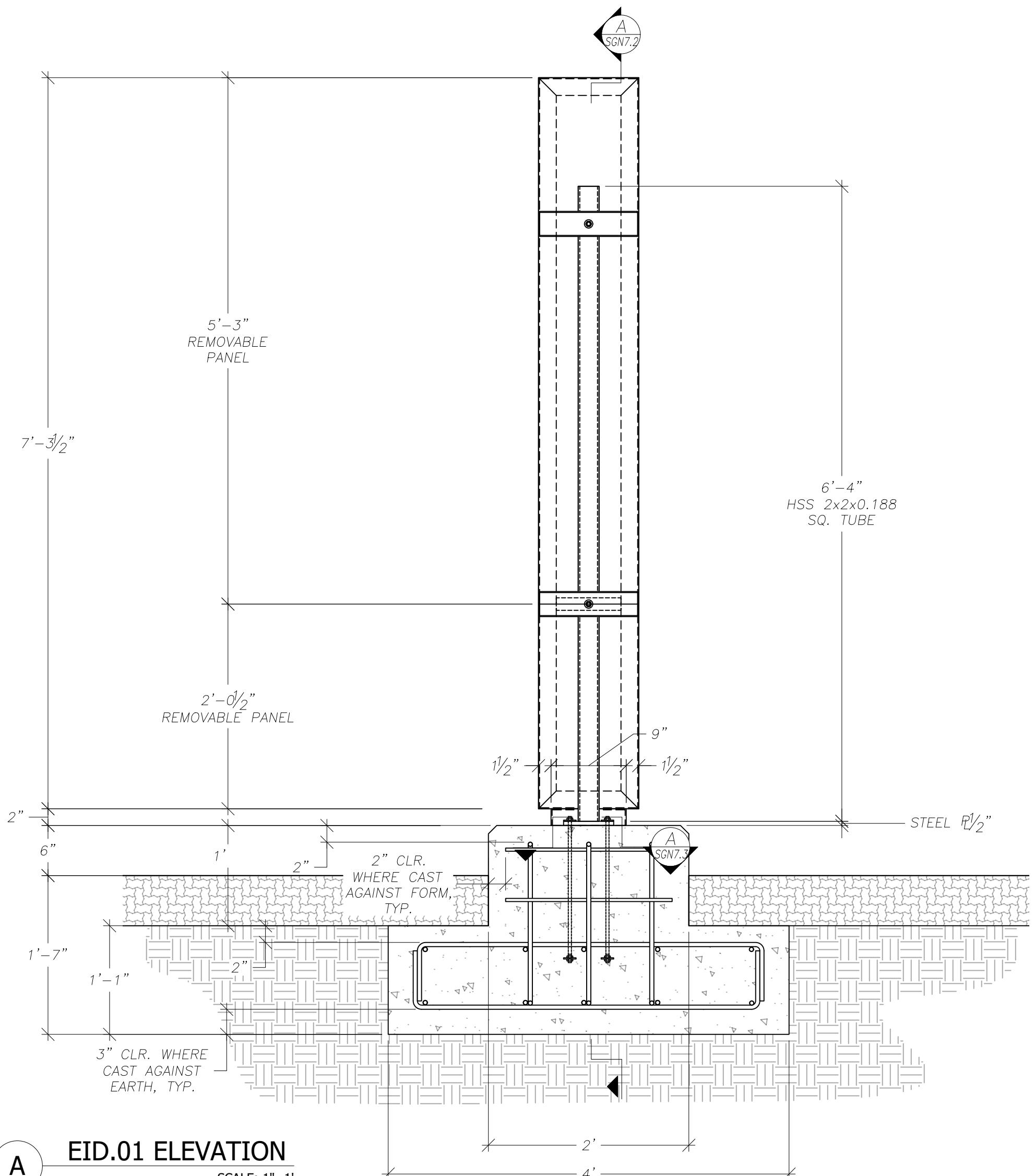
$$\gamma_v = 1 - \frac{1}{1 + \frac{2}{3} \sqrt{\frac{b_1}{b_2}}}$$

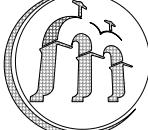
$$R = \frac{P_u b_1 b_2}{A_f}$$

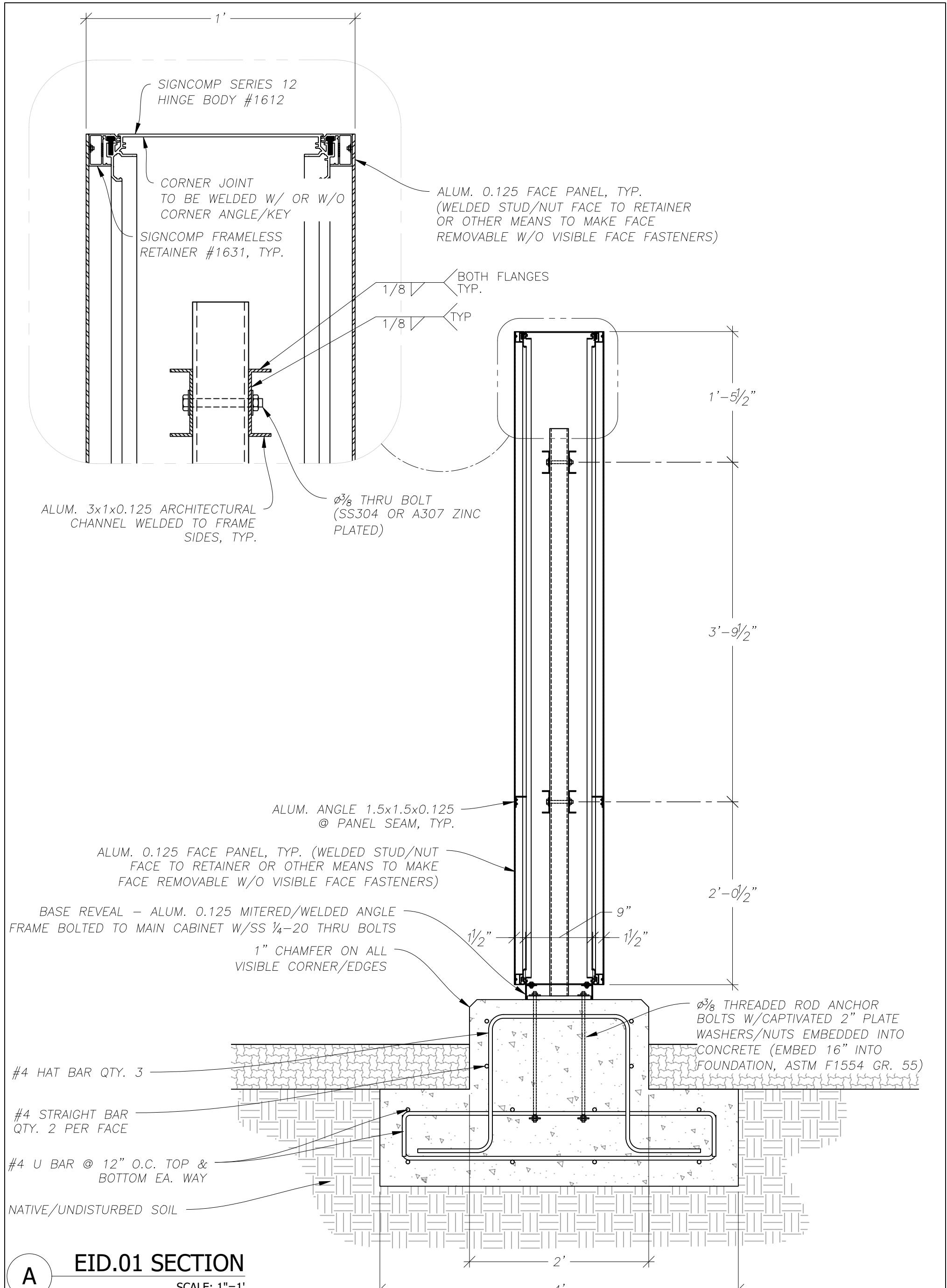
$$A_f = BL$$

$$\phi v_c (\text{psi}) = \phi (2 + y) \sqrt{f'_c}$$

$$y = \text{MIN} \left(2, \frac{4}{\beta_c}, 40 \frac{d}{b_0} \right)$$


$$b_0 = \frac{AP}{d}, b_1 = (0.5c_1 + 0.5b_1 + d), b_2 = (0.5c_2 + 0.5b_2 + d)$$

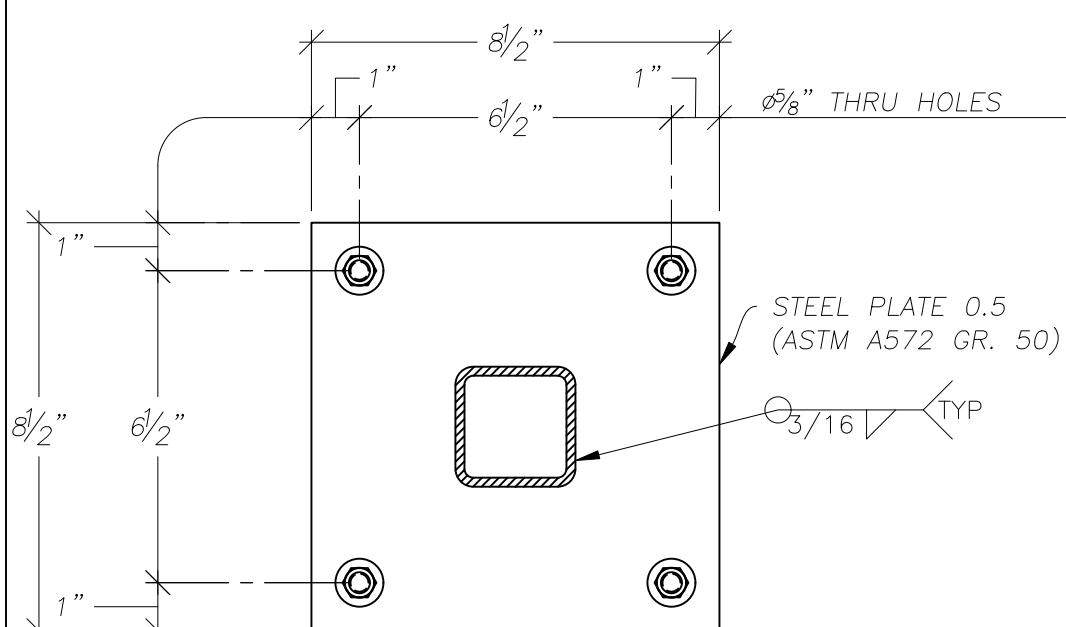

Case	P _u	M _u	b ₁	b ₂	b ₀	γ_v	β_c	y	A _f	A _p	R	J	V _u (psi)	ϕV_c
1	2.1	0.0	12.0	12.0	0.3	0.4	1.0	2.0	16.0	2.8	0.1	0.5	4.8	150.0
2	2.1	1.9	12.0	12.0	0.3	0.4	1.0	2.0	16.0	2.8	0.1	0.5	4.9	150.0
3	1.6	1.9	12.0	12.0	0.3	0.4	1.0	2.0	16.0	2.8	0.1	0.5	3.7	150.0


[Satisfactory]

where $\phi = 0.75$, (ACI 318 21.2)

NOTE: PEDESTAL/PLINTH TO BE FORMED W/ BOARD FORM OR BOARD FORM LINER. PATTERN T.B.D.

<p>MISSION STRUCTURE ENGINEERING</p> <p>779 N. KATHLEEN LN. UNIT A ORANGE, CA 92867 INFO@MISSIONSTRUCTURE.COM 510.593.5022</p>	ISSUED FOR	REV	DATE	SEALS AND SIGNATURES 	CLIENT INFORMATION <p>SHANNON LEIGH STRATEGIC PLACEMAKING</p> <p>1455 Hays Street San Leandro, CA 94577 510.969.7870 info@shannonleigh.net</p>	PROJECT INFORMATION Las Positas College 3000 Campus Hill Drive Livermore, CA 94551	PROJECT NUMBER <hr/> DRAWING TITLE EID.01 Elevation
	1st Submission	0	1/15/26				

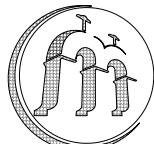


A

EID.01 SECTION

SCALE: 1"=1'

MISSION STRUCTURE ENGINEERING	ISSUED FOR 1st Submission	REV 0	DATE 1/15/26	SEALS AND SIGNATURES MICHAEL CLARK BENNETT LICENSED PROFESSIONAL ENGINEER C.90708 STATE OF CALIFORNIA	CLIENT INFORMATION SHANNON LEIGH STRATEGIC PLACEMAKING 1455 Hays Street San Leandro, CA 94577 510.969.7870 info@shannonleigh.net	PROJECT INFORMATION Las Positas College 3000 Campus Hill Drive Livermore, CA 94551	PROJECT NUMBER
779 N. KATHLEEN LN. UNIT A ORANGE, CA 92867 INFO@MISSIONSTRUCTURE.COM 510.593.5022							DRAWING TITLE EID.01 Section
							DRAWING NUMBER SGN7.2


NOTE: MAY USE TRIANGULAR
STIFFENER/GUSSET FOR
IMPROVED FIT UP

A

BASEPLATE TYPE 1

SCALE: 3"=1'

NOTE: APPLY HEAVY EPOXY
PRIMER TO ALL SURFACES OF
BASEPLATES

<p>MISSION STRUCTURE ENGINEERING</p> <p>779 N. KATHLEEN LN. UNIT A ORANGE, CA 92867 INFO@MISSIONSTRUCTURE.COM 510.593.5022</p>

ISSUED FOR REV DATE
1st Submission 0 1/15/26

CLIENT INFORMATION

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

PROJECT INFORMATION
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

PROJECT NUMBER

DRAWING TITLE

**EID.01
Details**

DRAWING NUMBER

SGN7.3

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	1 / 5
Section	Freestanding EID.01			Job No.

Freestanding Monument Sign

Project Location:
3000 Campus Hill Drive
Livermore, CA 94551

for

Shannon-Leigh Associates, LLC
1455 Hays Street
San Leandro, CA 94577

Scope of design:

Design of freestanding monument sign anchorage & foundation. Design includes load analysis, base plate/anchor bolt design & footing design. Design Criteria based on geotechnical report by Ninyo & Moore dated November 22, 2023.

Current Codes Which Shall Apply (As applicable to project):

CBC 2025, ASCE 7-22, AISC 360-22, ACI 318-19, AA ADM1 2020,

Dead Load

Total Sign Weight:

$DL = \text{Total Weight} = 132.375 \text{ lbf}$

Alum. Cabinet Weight:

$DL_{\text{cab}} = \text{Weight.F14} = 57.375 \text{ lbf}$

Seismic Load (Full Sign Mass)

Seismic Loads

Seismic Loads of Non-Building Structures

ASCE 7-16 Chapter 15

Seismic Base Shear:

$$V_B = C_s * W_p$$

$$R = 3$$

$$SDS = 1.36$$

$$I = 1.25$$

$$W_p = 132.375 \text{ lbf}$$

Seismic Response Coefficient:

$$C_s = \frac{SDS}{R} = 0.567$$

Seismic Base Shear:

$$V_B = C_s * W_p = 75.013 \text{ lbf}$$

Overstrength Factor, Ω (where applicable): OS = 1.75

Load Distribution

Per ASCE Chapter 29

Top of Sign Height:

$$h = s = 8 \text{ ft}$$

Cabinet Height:

$$h_c = \text{Weight.C2} = 7.5 \text{ ft}$$

Pedestal Height:

$$h_p = 0.5 \text{ ft}$$

Sign Height:

$$s = h_c + h_p = 8 \text{ ft}$$

Sign Width (Breadth):

$$B = \text{Weight.E2} = 1 \text{ ft}$$

Number of Posts:

$$n_p = 1$$

Gross Sign Area:

$$A_g = s * B = 8 \text{ ft}^2$$

Tributary Area (single post):

$$A_n = A_g = 8 \text{ ft}^2$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	2 / 5
Section	Freestanding EID.01			Job No.

Moment Arm (@ baseplate):

$$arm_1 = 1.05 * \left(\frac{h_c}{2} \right) = 3.938 \text{ ft}$$

Moment Arm (@ top of ftg.):

$$arm_T = 1.05 * \left(\frac{s}{2} \right) + 0.5 \text{ ft} = 4.7 \text{ ft}$$

Wind Pressure:

Wind Load Section 1:

Wind Moment Section 1:

Wind Torsion:

Seismic Load on Section 1 (alum. cab.):

Seismic Load Section 1 w/ Over strength:

EQ Lateral Shear Force @ baseplate:

EQ Lateral Force Moment:

EQ Lateral Force w/ OS:

EQ Lateral Force Moment w/OS:

$$EQ_{s1} = EQ2.C_s * DL = 75.013 \text{ lbf}$$

$$EQ_{s1os} = EQ_{s1} * EQ2.OS = 131.272 \text{ lbf}$$

$$V_{1eq} = EQ_{s1} = 75.013 \text{ lbf}$$

$$M_{1eq} = V_{1eq} * arm_1 = 295.362 \text{ lbf * ft}$$

$$V_{1eqos} = EQ_{s1os} = 131.272 \text{ lbf}$$

$$M_{1eqos} = V_{1eqos} * arm_1 = 516.883 \text{ lbf * ft}$$

LRFD Load Combinations (as applicable-anchorage)

LC: 0.9 DL + 1.0 W

Dead Load:

$$DL_{min} = \frac{0.9 * (DL_{cab})}{n_p} = 51.638 \text{ lbf}$$

Shear Wind:

Moment Wind:

$$V_{1w1} = W_{11} = 200 \text{ lbf}$$

$$M_{1w1} = V_{1w1} * arm_1 = 787.5 \text{ lbf * ft}$$

LC: 1.2 DL + 1.0 W

Dead Load:

$$DL_{max} = \frac{1.2 * (DL_{cab})}{n_p} = 68.85 \text{ lbf}$$

Shear Wind:

Moment Wind:

$$V_{1w2} = W_{11} = 200 \text{ lbf}$$

$$M_{1w2} = V_{1w2} * arm_1 = 787.5 \text{ lbf * ft}$$

LC: 0.9 DL - 1.0 E_v + E_{mh}

Dead Load:

$$DL_{eqmin} = \frac{0.9 * (DL_{cab})}{n_p} = 51.638 \text{ lbf}$$

Vertical Seismic:

$$E_{v1} = \frac{-0.2 * EQ2.SDS * (DL_{cab})}{n_p} = -15.606 \text{ lbf}$$

Shear EQ:

$$V_{1eq1} = \frac{EQ_{s1os}}{n_p} = 131.272 \text{ lbf}$$

Moment EQ:

$$M_{1eq1} = \left(\frac{EQ_{s1os}}{n_p} \right) * arm_1 = 516.883 \text{ lbf * ft}$$

LC: 1.2 DL + 1.0 E_v + E_{mh}

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	3 / 5
Section	Freestanding EID.01			Job No.

Dead Load:

$$DL_{1eqmax} = \frac{1.2 * (DL_{cab})}{n_p} = 68.85 \text{ lbf}$$

Vertical Seismic:

$$E_{v2} = \frac{0.2 * EQ2.SDS * (DL_{cab})}{n_p} = 15.606 \text{ lbf}$$

Shear EQ:

$$V_{eq2} = \frac{EQ_{s1os}}{n_p} = 131.272 \text{ lbf}$$

Moment EQ:

$$M_{eq2} = \frac{EQ_{s1os} * arm_1}{n_p} = 516.883 \text{ lbf * ft}$$

ASD Load Combinations

(Note: Omit axial loads on post-no restoring moment weld design)

LC: DL + 0.6 W

LC: DL + 0.7 (E_v + E_{mh})

Convert to ASD/service level loads

Vertical Load, ASD:

$$DL_{S1} = DL = 132.375 \text{ lbf}$$

Wind Pressure, ASD:

$$p_{wasd} = p_w * 0.6 = 15 \text{ psf}$$

Wind Load, ASD:

$$W_{lasd} = p_{wasd} * A_n = 120 \text{ lbf}$$

Wind Force Moment, ASD:

$$M_{wasd} = arm_1 * W_{lasd} = 472.5 \text{ ft * lbf}$$

Wind Torsion, ASD:

$$T_{asd} = T_w * 0.6 = 24 \text{ ft * lbf}$$

Max. Vertical Load, ASD:

$$DL_{eqasd} = \frac{DL_{S1} + 0.7 * 0.2 * EQ2.SDS * DL_{S1}}{n_p} = 157.579 \text{ lbf}$$

Seismic Load, ASD:

$$EQ_{asd} = \frac{EQ2.V_B * 0.7}{n_p} = 52.509 \text{ lbf}$$

Seismic Load w/ OS, ASD:

$$EQ_{osasd} = EQ_{asd} * EQ2.OS = 91.890 \text{ lbf}$$

Seismic Force Moment, ASD:

$$M_{eqasd} = arm_1 * EQ_{asd} = 206.753 \text{ ft * lbf}$$

Seismic Force Moment w/ OS, ASD:

$$M_{eqasdos} = EQ_{osasd} * arm_1 = 361.818 \text{ lbf * ft}$$

Weld Connection From Post to Base Plate

Tube Depth:

$$d_{tube} = 2 \text{ in}$$

Tube Breadth:

$$b_{tube} = 2 \text{ in}$$

Tube Wall Thickness:

$$t_{tube} = 0.188 \text{ in}$$

Weld Line Section Modulus:

$$S_w = d_{tube} * b_{tube} + \frac{d_{tube}^2}{3} = 5.333 \text{ in}^2$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	4 / 5
Section	Freestanding EID.01			Job No.

Weld Line Area:

$$A_w = d_{tube} * 2 + b_{tube} * 2 = 8 \text{ in}$$

Fillet Weld Design (AISC 360 Section J2.4 or ADM J.2)

Weld to resist loads V & M.

Material = "Steel"

Weld Group Configuration:

Type = "sq 2x2x0.188"

Input Weld Shear Load:

$$V = W_{lasd} = 120 \text{ lbf}$$

Input Weld Moment Load:

$$M = M_{wasd} = 472.5 \text{ ft * lbf}$$

Weld Line Section Modulus (bending):

$$S_w = \text{Report1}.S_w = 5.333 \text{ in}^2$$

Weld Line Section Modulus (shear):

$$A_w = \text{Report1}.A_w = 8 \text{ in}$$

Required Strength:

$$R = \sqrt{\left(\frac{V}{A_w}\right)^2 + \left(\frac{M}{S_w}\right)^2} = 1063.2 \frac{\text{lb}}{\text{in}}$$

Weld Electrode Tensile Strength:

$$f_u = 70 \text{ ksi}$$

Weld Factor of Safety:

$$\Omega_w = 2$$

Strength of Weld per inch:

$$R_n = \begin{cases} \frac{0.707 * f_u * 0.6 * \left(\frac{1 \text{ in}}{16}\right)}{\Omega_w} & \text{if Material == "Steel"} \\ \frac{0.707 * 0.85 * f_u * 0.6 * \left(\frac{1 \text{ in}}{16}\right)}{\Omega_w} & \text{otherwise} \end{cases} = 927.9 \frac{\text{lb}}{\text{in}}$$

Required Size of Weld:

$$a_{req} = \text{RoundUp}\left(\frac{R}{R_n}\right) = 2/16" \text{ Weld Leg Size}$$

Foundation Loads

Spread Footing Foundation

Nominal loads for allowable capacities per geotechnical report. Seismic Loads to have omega/overstrength applied (cantilever foundation system). Design provided in design worksheet to follow.

Width of Footing:

$$W_{ftg} = 3 \text{ ft}$$

Length of Footing:

$$l_{ftg} = 3 \text{ ft}$$

Width of Pedestal:

$$W_{ped} = 2 \text{ ft}$$

Length of Pedestal:

$$l_{ped} = 2 \text{ ft}$$

Height of Pedestal:

$$H_{ped} = 12 \text{ in}$$

Weight of Concrete Pedestal:

$$W_{ped} = W_{ped} * l_{ped} * H_{ped} * 150 \text{ pcf} = 600 \text{ lbf}$$

LC: 0.9 DL + W

(nominal values for foundation software shown below)

Vertical Force:

$$A_1 = 0.9 * (DL + W_{ped}) = 659.138 \text{ lbf}$$

Horizontal Force:

$$P_1 = (B * s * p_w) = 200 \text{ lbf}$$

Moment:

$$M_1 = P_1 * \text{arm}_T = 940 \text{ lbf * ft}$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	5 / 5
Section	Freestanding EID.01			Job No.

LC: $0.9 \text{ DL} + (E_v + E_{mh})$

(nominal values for foundation software shown below)

DL Vertical Force:

$$A_2 = 0.9 * (\text{DL} + \text{Wt}_{\text{ped}}) = 659.138 \text{ lbf}$$

EQ Vertical Force:

$$A_3 = (-0.2 * \text{EQ2.SDS} * (\text{DL} + \text{Wt}_{\text{ped}})) = -199.206 \text{ lbf}$$

Horizontal Forces:

Sign Cabinet:

$$P_2 = \text{EQ2.V}_B * \text{EQ2.OS} = 131.272 \text{ lbf}$$

Sign Cabinet moment arm:

$$a_2 = \text{arm}_T = 4.7 \text{ ft}$$

Sign Cabinet moment:

$$M_2 = P_2 * a_2 = 616.978 \text{ lbf * ft}$$

Combined EQ Axial:

$$A_{\text{eq}} = A_2 + A_3 = 459.932 \text{ lbf}$$

Combined EQ Shear:

$$V_{\text{eq}} = P_2 = 131.272 \text{ lbf}$$

Combined EQ Moment:

$$M_{\text{eq}} = M_2 = 616.978 \text{ lbf * ft}$$

Weight Takeoff

Component	Height: 7.5 ft		Width: 1 ft		Weight
	Unit Wt	Unit Qty	Wt	Qty	
Skin	2 psf	7.5 ft ²	15 lbf	2	30 lbf
Post	10 plf	7.5 ft	75 lbf	1	75 lbf
Channel Extrusion	1.5 plf	17 ft	25.5 lbf	1	25.5 lbf
Misc Framing/Stiffeners	0.25 psf	7.5 ft ²	1.875 lbf	1	1.875 lbf

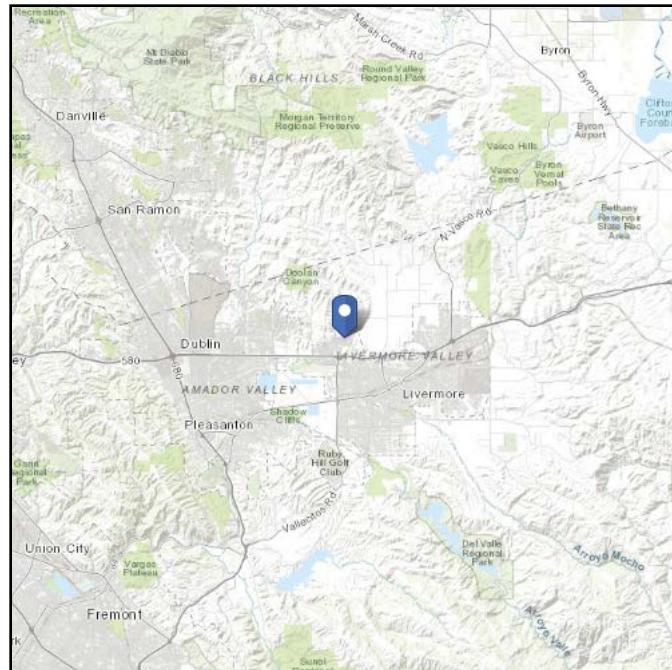
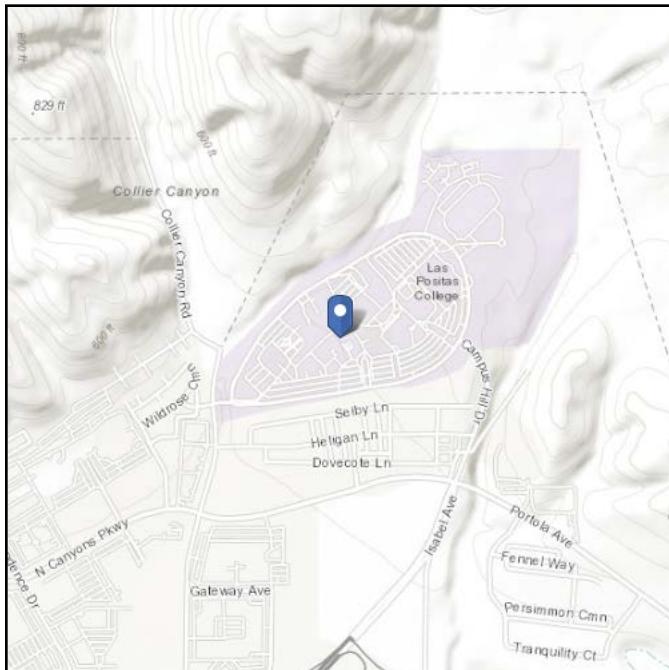
Cabinet Wt.: 57.38 lbf

Total: 132.4 lbf

ASCE Hazards Report

Address:

Las Positas College - 3000
Campus Hill Drive
Livermore,



Standard: ASCE/SEI 7-22

Risk Category: III

Soil Class: D - Stiff Soil

Latitude: 37.710873

Longitude: -121.80058

Elevation: 480.38484203241944 ft
(NAVD 88)

Wind

Results:

Wind Speed	99 Vmph
10-year MRI	64 Vmph
25-year MRI	70 Vmph
50-year MRI	75 Vmph
100-year MRI	79 Vmph
300-year MRI	87 Vmph
700-year MRI	93 Vmph
1,700-year MRI	99 Vmph
3,000-year MRI	103 Vmph
10,000-year MRI	113 Vmph
100,000-year MRI	129 Vmph
1,000,000-year MRI	147 Vmph

Data Source:

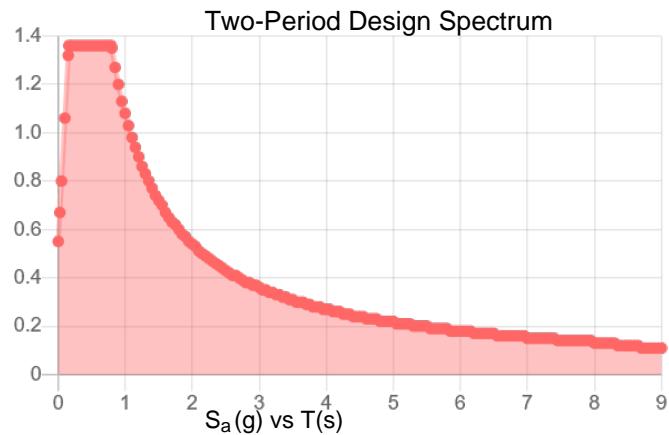
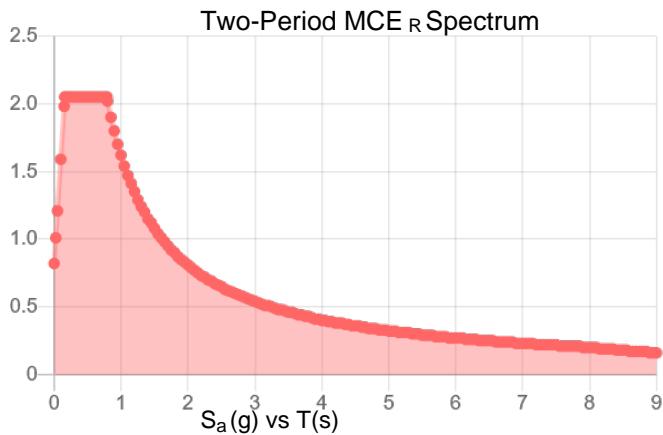
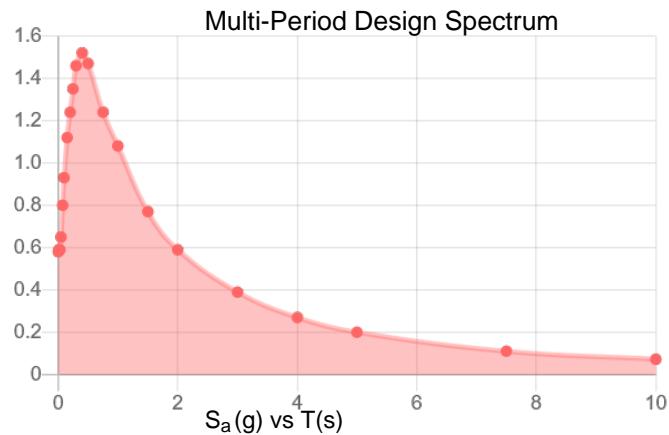
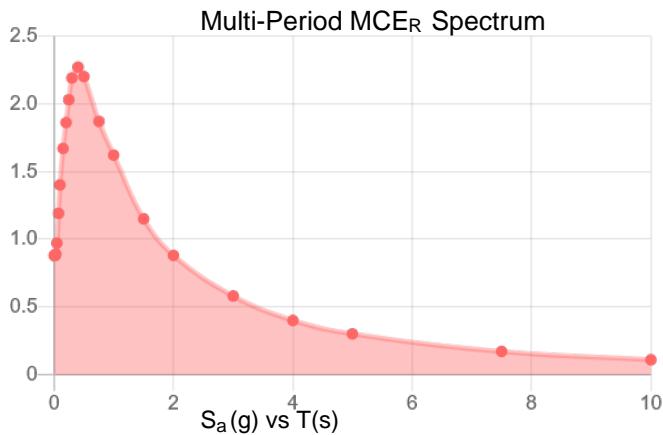
ASCE/SEI 7-22, Fig. 26.5-1C and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed:

Mon Nov 24 2025

AMERICAN SOCIETY OF CIVIL ENGINEERS

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-22 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years). Values for 10-year MRI, 25-year MRI, 50-year MRI and 100-year MRI are Service Level wind speeds, all other wind speeds are Ultimate wind speeds.





Site is not in a hurricane-prone region as defined in ASCE/SEI 7-22 Section 26.2.

Site Soil Class: D - Stiff Soil

Results:

PGA _M :	0.73	T _L :	8
S _{MS} :	2.05	S _S :	2.13
S _{M1} :	1.62	S ₁ :	0.81
S _{DS} :	1.36	V _{S30} :	260
S _{D1} :	1.08		

Seismic Design Category: E

MCE_R Vertical Response Spectrum
Vertical ground motion data has not yet been made available by USGS.

Design Vertical Response Spectrum
Vertical ground motion data has not yet been made available by USGS.

Data Accessed: **Mon Nov 24 2025**

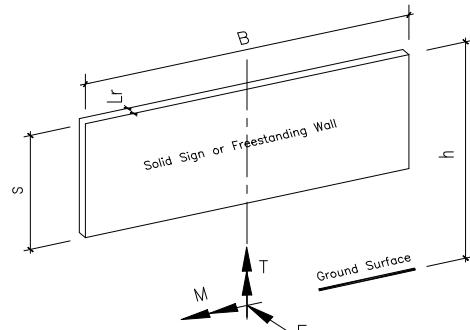
Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-22 and ASCE/SEI 7-22 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-22 Ch. 21 are available from USGS.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.



Wind Analysis for Freestanding Wall & Sign Based on ASCE 7-22

Monument Sign Wind Pressure

INPUT DATA

Exposure category (B, C or D)	=	C
Importance factor, 1.0 only, (Table 1.5-2)	I _w =	1.00
Basic wind speed (ASCE 7 26.5.1)	V =	99 mph, (159.32 kph)
Topographic factor (26.8 & Table 26.8-1)	K _{zt} =	1 Flat
Height of top	h =	11 ft, (3.35 m)
Vertical dimension (for wall, s = h)	s =	11 ft, (3.35 m)
Horizontal dimension	B =	4 ft, (1.22 m)
Dimension of return corner	L _r =	0 ft, (0.00 m)

DESIGN SUMMARY

Max horizontal wind pressure	p =	25 psf, (1177 N/m ²)
Max total horizontal force at centroid of base	F =	1.08 kips, (5 kN)
Max bending moment at centroid of base	M =	6.54 ft-kips, (9 kN-m)
Max torsion at centroid of base	T =	0.87 ft-kips, (1 kN-m)

ANALYSIS

Velocity pressure

$$q_h K_d = (0.00256 K_z K_{zt} K_e V^2) K_d = 18.13 \text{ psf}$$

where: q_h = velocity pressure at mean roof height, h . (Eq. 26.10-1 page 277), $K_e = 1.00$, (Tab. 26.9-1 page 275)

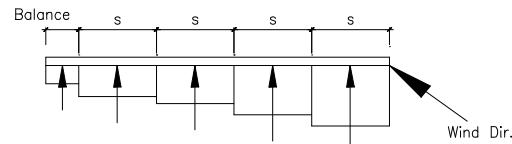
K_z = velocity pressure exposure coefficient evaluated at height, h , (Tab. 26.10-1, pg 277) = 0.85

K_d = wind directionality factor. (Tab. 26.6-1, page 274) = 0.85

h = height of top = 11.00 ft

Wind Force Case A: resultant force through the geometric center (Sec. 29.3.1)

p = $q_h K_d G C_N$	=	25 psf
F = p A _s	=	1.08 kips
M = F (h - 0.5s) for sign, F (0.55h) for wall	=	6.54 ft-kips
T =	=	0.00 ft-kips
where: G = gust effect factor. (Sec. 26.9)	=	0.85
C _f = net force coefficient. (Fig. 29.3-1, page 301)	=	1.60
A _s = B s	=	44.0 ft ²


Wind Force Case B: resultant force at 0.2 B offset of the geometric center (Sec. 29.3.1)

p = Case A	=	25 psf
F = Case A	=	1.08 kips
M = Case A	=	6.54 ft-kips
T = 0.2 F B	=	0.87 ft-kips

Wind Force Case C: resultant force different at each region (Sec. 29.4.1)

p = $q_h G C_f$		
F = $\sum p A_s$		
M = $\sum [F (h - 0.5s) \text{ for sign, } F (0.55h) \text{ for wall}]$		
T = $\sum T_s$		

Distance	C _f	P _i	A _{si}	F _i	M _i	T _i
(ft)	(Fig. 29.3-1)	(psf)	(ft ²)	(kips)	(ft-kips)	(ft-kips)
4.0	1.800	28	44	1.22	7.38	0.00
Σ						
4.0	1.200	18	0	0.00	0.00	0.00
Σ				1.22	7.38	0.00

<== Case C may not be considered, footnote 3 of Fig. 6-20

PROJECT : Las Positas
CLIENT :
JOB NO. : DATE :

PAGE :
DESIGN BY :
REVIEW BY :

HSS (Tube, Pipe) Member Design with Torsional Loading Based on AISC 360-10/16

EID.01 Post DL+W

INPUT DATA & DESIGN SUMMARY

MEMBER SHAPE (Tube or Pipe) & SIZE

HSS2X2X3/16

<== Tube

STEEL YIELD STRESS

$F_y = 46$ ksi, (317 MPa)

TORSIONAL FORCE

$T_r = 0.024$ ft-kips, (0 kN-m), ASD

AXIAL COMPRESSION FORCE

$P_r = 0.133$ kips, (1 kN), ASD

STRONG AXIS EFFECTIVE LENGTH

$kL_x = 12$ ft, (3.66 m)

WEAK AXIS EFFECTIVE LENGTH

$kL_y = 12$ ft, (3.66 m)

STRONG AXIS BENDING MOMENT

$M_{rx} = 0.473$ ft-kips, (1 kN-m), ASD

STRONG AXIS BENDING UNBRACED LENGTH

$L_b = 7$ ft, (2.13 m), (AISC 360 F2.2.c)

STRONG DIRECTION SHEAR LOAD, ASD

$V_{strong} = 0.12$ kips, (1 kN)

WEAK AXIS BENDING MOMENT

$M_{ry} = 0$ ft-kips, (0 kN-m), ASD

WEAK DIRECTION SHEAR LOAD, ASD

$V_{weak} = 0$ kips, (0 kN)

THE DESIGN IS ADEQUATE.

ANALYSIS

CHECK TORSIONAL CAPACITY (AISC 360 H3.1)

$$T_c = \frac{1}{\Omega_T} T_n = \frac{1}{\Omega_T} \begin{cases} \left[0.6F_y, \text{ for } \frac{h}{t} \leq 2.45\sqrt{\frac{E}{F_y}} \right] \\ \left[2(B-t)(H-t) - 4.5(4-\pi)t^3 \right] \left[0.6F_y 2.45\sqrt{\frac{E}{F_y}} \frac{t}{h}, \text{ for } \frac{h}{t} \leq 3.07\sqrt{\frac{E}{F_y}} \right], \text{ for HSS Tube} \\ \left[0.458 \frac{E\pi^2}{(h/t)^2}, \text{ for } \frac{h}{t} \leq 260 \right] \end{cases} = 1.7 \text{ ft-kips}$$

$$\frac{\pi(D-t)^2 t}{2} \text{ Max} \left[\frac{1.23E}{\sqrt{L} \left(\frac{D}{t} \right)^{(5/4)}}, \frac{0.60E}{\left(\frac{D}{t} \right)^{(3/2)}} \right], \text{ for HSS Pipe} > T_r \text{ [Satisfactory]}$$

Where $B = 2.00$ $H = 2.00$ $h = 1.44$ $t = 0.19$ $D = 29000$ $E = 29000$

$\Omega_T = 1.67$, ASD

CHECK COMBINED COMPRESSION AND BENDING CAPACITY (AISC 360 H1)

$$\begin{cases} \frac{P_r}{P_c} + 8 \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right), \text{ for } \frac{P_r}{P_c} \geq 0.2 \\ \frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right), \text{ for } \frac{P_r}{P_c} < 0.2 \end{cases} = 0.27 < 1.3 \text{ [Satisfactory]}$$

(2021 IBC, 1605.3.2)

Where $P_c = P_n / \Omega_c = 8 / 1.67 = 4.65$ kips, (AISC 360 Chapter E)

> P_r [Satisfactory]

$M_{cx} = M_n / \Omega_b = 3.06 / 1.67 = 1.83$ ft-kips, (AISC 360 Chapter F)

> M_{rx} [Satisfactory]

$M_{cy} = M_n / \Omega_b = 3.06 / 1.67 = 1.83$ ft-kips, (AISC 360 Chapter F)

> M_{ry} [Satisfactory]

CHECK SHEAR CAPACITY (AISC 360 G2)

$V_{n,strong} / \Omega_v = 13.8 / 1.67 = 8.3$ kips > $V_{strong} = 0.1$ kips [Satisfactory]

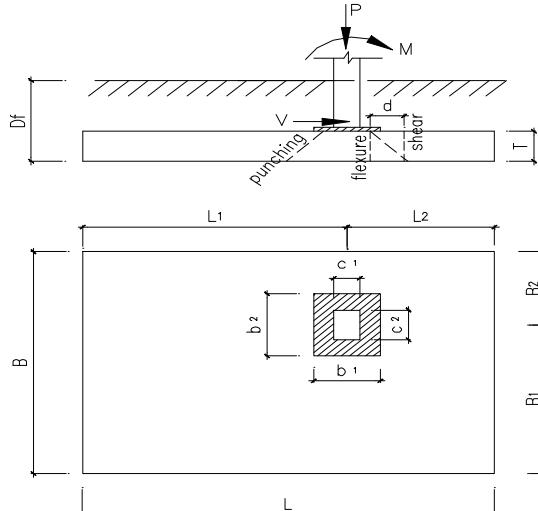
$V_{n,weak} / \Omega_v = 13.8 / 1.67 = 8.3$ kips > $V_{weak} = 0.0$ kips [Satisfactory]

CHECK COMBINED TORSION, SHEAR, COMPRESSION, AND BENDING CAPACITY (AISC 360 H3.2)

$$\begin{cases} \frac{P_r}{P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) + \left[\text{Max} \left(\frac{V_{strong}}{V_{c,strong}}, \frac{V_{weak}}{V_{c,weak}} \right) + \frac{T_r}{T_c} \right]^2, \text{ for } \frac{T_r}{T_c} > 0.2 \\ \text{Torsion Neglected, for } \frac{T_r}{T_c} \leq 0.2 \end{cases} = 0.0 < 1.3 \text{ [Satisfactory]}$$

(2021 IBC, 1605.3.2)

Eccentric Footing Design Based on ACI 318-19


EID.01 0.9DL+W Spread Ftg.

INPUT DATA

COLUMN WIDTH	c_1	=	2	in
COLUMN DEPTH	c_2	=	2	in
BASE PLATE WIDTH	b_1	=	5	in
BASE PLATE DEPTH	b_2	=	5	in
FOOTING CONCRETE STRENGTH	f_c'	=	2.5	ksi
REBAR YIELD STRESS	f_y	=	60	ksi
AXIAL DEAD LOAD	P_{DL}	=	0.659	k
AXIAL LIVE LOAD	P_{LL}	=	0	k
LATERAL LOAD (0=WIND, 1=SEISMIC)		=	0	Wind, SD
WIND AXIAL LOAD	P_{LAT}	=	0	k, SD
WIND MOMENT LOAD	M_{LAT}	=	0.94	ft-k, SD
WIND SHEAR LOAD	V_{LAT}	=	0.2	k, SD
SURCHARGE	q_s	=	0	ksf
SOIL WEIGHT	w_s	=	0.11	kcf
FOOTING EMBEDMENT DEPTH	D_f	=	1.5	ft
FOOTING THICKNESS	T	=	12	in
ALLOWABLE SOIL PRESSURE	Q_a	=	2	ksf
FOOTING WIDTH	B_1	=	1.5	ft
	B_2	=	1.5	ft
FOOTING LENGTH	L_1	=	1.5	ft
	L_2	=	1.5	ft
REINFORCING SIZE		#	4	

DESIGN SUMMARY

FOOTING WIDTH	B =	3.00	ft
FOOTING LENGTH	L =	3.00	ft
FOOTING THICKNESS	T =	12	in
LONGITUDINAL REINF., TOP		1 #4	
LONGITUDINAL REINF., BOT.		3 #4 @ 15 in o.c.	
TRANSVERSE REINF., BOT.		3 #4 @ 15 in o.c.	

THE FOOTING DESIGN IS ADEQUATE.

ANALYSIS

DESIGN LOADS AT TOP OF FOOTING (IBC 1605.2 & ACI 318 5.3)

CASE 1:	DL + LL	P	=	1	kips	1.2 DL + 1.6 LL	P _u	=	1	kips
		M	=	0	ft-kips		M _u	=	0	ft-kips
		e	=	0.0	ft, fr cl ftg		e _u	=	0.0	ft, fr cl ftg
CASE 2:	DL + LL + 0.6(1.3) W	P	=	1	kips	1.2 DL + LL + 1.0 W	P _u	=	1	kips
		M	=	1	ft-kips		M _u	=	1	ft-kips
		V	=	0	kips		V _u	=	0	kips
CASE 3:	DL + LL + 0.6(0.65) W	e	=	1.2	ft, fr cl ftg		e _u	=	1.2	ft, fr cl ftg
		P	=	1	kips	0.9 DL + 1.0 W	P _u	=	1	kips
		M	=	1	ft-kips		M _u	=	1	ft-kips
		V	=	0	kips		V _u	=	0	kips
		e	=	0.8	ft, fr cl ftg		e _u	=	1.6	ft, fr cl ftg

CHECK OVERTURNING FACTOR (2021 IBC 1605.2.1, 1808.3.1, & ASCE 7-22 12.13.4)

$M_R / M_O = 3.3 > F = 1.0 / 0.9 = 1.11$ [Satisfactory]

$$\text{Where } M_O = M_{LAT} + V_{LAT} T - P_{LAT} L_2 =$$

$$P_{ftq} = (0.15 \text{ kcf}) T B L = 1.35 \text{ k, footing weight}$$

$$P_{soil} = w_s (D_f - T) B L = 0.50 \text{ k, soil weight}$$

$$M_R = P_{DL}L_2 + 0.5 (P_{ftg} + P_{soil}) L = 4 \text{ k-ft}$$

FOR REVERSED LATERAL LOADS,

$M_R / M_O = 3.0 > F = 1.0 / 0.9$ [Satisfactory]

$$\text{Where } M_O = M_{LAT} + V_{LAT} D_f - P_{LAT} L_1 = 1 \text{ k-ft}$$

$$M_R = P_{DL}L_1 + 0.5 (P_{ftq} + P_{soil}) L = 4 \text{ k-ft}$$

CHECK SLIDING (2021 IBC 1807.2.3)

1.5 (V_{Lat, ASD}) = 0.18 kips < $\mu \Sigma W$ = 0.80 kips [Satisfactory]
 Where μ = 0.4

CHECK SOIL BEARING CAPACITY (ACI 318 13.3.1.1)

Service Loads	CASE 1	CASE 2	CASE 3	
P	0.7	0.7	0.7	
e	0.0	1.5	0.9	ft (from center of footing)
q _s B L	0.0	0	0.0	k, (surcharge load)
(0.15-w _s)T B L	0.4	0.4	0.2	k, (footing increased)
Σ P	1.0	1.0	0.9	k
e _L	0.0 < L/6	0.9 > L/6	0.7 > L/6	ft
e _B	0.0 < B/6	0.0 < B/6	0.0 < B/6	ft
q _L	0.3	1.2	0.7	k / ft
q _{max}	0.1	0.4	0.2	ksf
q _{allow}	2.0	2.7	2.7	ksf

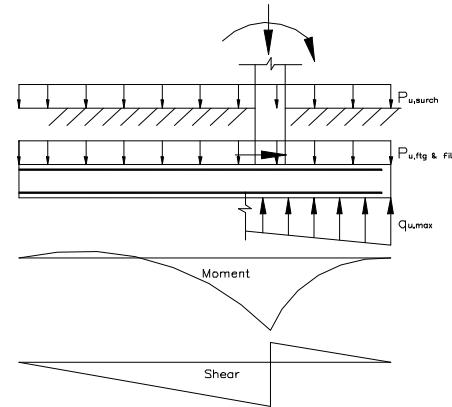
Where

$$q_L = \begin{cases} \frac{(\Sigma P) \left(1 + \frac{6e_L}{L}\right)}{L}, & \text{for } e_L \leq \frac{L}{6} \\ \frac{2(\Sigma P)}{3(0.5L - e_L)}, & \text{for } e_L > \frac{L}{6} \end{cases}$$

$$q_{MAX} = \begin{cases} \frac{q_L \left(1 + \frac{6e_B}{B}\right)}{B}, & \text{for } e_B \leq \frac{B}{6} \\ \frac{2q_L}{3(0.5B - e_B)}, & \text{for } e_B > \frac{B}{6} \end{cases}$$

[Satisfactory]

DESIGN FLEXURE & CHECK FLEXURE SHEAR


(ACI 318 13, 21, & 22)

$$q_{u,MAX} = \begin{cases} \frac{(\Sigma P_u) \left(1 + \frac{6e_u}{L}\right)}{BL}, & \text{for } e_u \leq \frac{L}{6} \\ \frac{2(\Sigma P_u)}{3B(0.5L - e_u)}, & \text{for } e_u > \frac{L}{6} \end{cases}$$

$$\rho_{MAX} = \frac{0.85 \beta_{1f} f_c}{f_y} \frac{\varepsilon_u}{\varepsilon_u + \varepsilon_t}$$

$$\rho = \frac{0.85 f_c \left(1 - \sqrt{1 - \frac{M_u}{0.383bd^2 f_c}}\right)}{f_y}$$

$$\rho_{MIN} = MIN \left(0.0018 \frac{T}{d}, \frac{4}{3} \rho \right)$$

FACTORED SOIL PRESSURE

Factored Loads	CASE 1	CASE 2	CASE 3	
P _u	0.8	0.8	0.6	k
e _u	0.0	1.4	1.9	ft
γ q _s B L	0.0	0.0	0.0	k, (factored surcharge load)
γ[0.15T + w _s (D _f - T)]BL	2.2	2.2	1.7	k, (factored footing & backfill loads)
Σ P _u	3.0	3.0	2.3	k
e _u	0.0 < L/6	0.4 < L/6	0.5 > L/6	ft
q _{u, max}	0.334	0.587	0.504	ksf

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 1

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.38	0.75	1.13	1.35	1.65	1.88	2.25	2.63	3.00
M _{u,col} (ft-k)	0	0	0	0	0	-0.1	-0.3	-0.6	-0.9	-1.2
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	0.8	0.8	0.8	0.8	0.8
P _{u,surch} (kif)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (kif)	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
M _{u,fg & fill} (ft-k)	0	-0.1	-0.2	-0.5	-0.7	-1.0	-1.3	-1.9	-2.5	-3.3
V _{u,fg & fill} (k)	0	0.3	0.6	0.8	1.0	1.2	1.4	1.7	1.9	2.2
q _{u,soil} (ksf)	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
M _{u,soil} (ft-k)	0	0.1	0.3	0.6	0.9	1.4	1.8	2.5	3.5	4.5
V _{u,soil} (k)	0	-0.4	-0.8	-1.1	-1.4	-1.6	-1.9	-2.3	-2.6	-3.0
Σ M _u (ft-k)	0	0.0	0.1	0.2	0.2	0.2	0.2	0.1	0.0	0
Σ V _u (kips)	0	-0.1	-0.2	-0.3	-0.4	0.4	0.3	0.2	0.1	0

(cont'd)

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 2

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.38	0.75	1.13	1.35	1.65	1.88	2.25	2.63	3.00
M _{u,col} (ft-k)	0	0	0	0	0	1.0	0.8	0.5	0.3	0.0
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	0.8	0.8	0.8	0.8	0.8
P _{u,surch} (klf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (klf)	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
M _{u,fg & fill} (ft-k)	0	-0.1	-0.2	-0.5	-0.7	-1.0	-1.3	-1.9	-2.5	-3.3
V _{u,fg & fill} (k)	0	0.3	0.6	0.8	1.0	1.2	1.4	1.7	1.9	2.2
q _{u,soil} (ksf)	0.08	0.14	0.21	0.27	0.31	0.36	0.40	0.46	0.52	0.59
M _{u,soil} (ft-k)	0	0.0	0.1	0.3	0.4	0.7	1.0	1.6	2.4	3.4
V _{u,soil} (k)	0	-0.1	-0.3	-0.6	-0.8	-1.1	-1.3	-1.8	-2.4	-3.0
ΣM_u (ft-k)	0	0.0	-0.1	-0.2	-0.2	0.7	0.5	0.3	0.1	0
ΣV_u (kips)	0	0.2	0.2	0.2	0.2	0.9	0.8	0.6	0.3	0

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 3

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.38	0.75	1.13	1.35	1.65	1.88	2.25	2.63	3.00
M _{u,col} (ft-k)	0	0	0	0	0	1.1	0.9	0.7	0.5	0.3
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	0.6	0.6	0.6	0.6	0.6
P _{u,surch} (klf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (klf)	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
M _{u,fg & fill} (ft-k)	0	0.0	-0.2	-0.4	-0.5	-0.7	-1.0	-1.4	-1.9	-2.5
V _{u,fg & fill} (k)	0	0.2	0.4	0.6	0.7	0.9	1.0	1.2	1.5	1.7
q _{u,soil} (ksf)	0.00	0.06	0.13	0.19	0.23	0.28	0.31	0.38	0.44	0.50
M _{u,soil} (ft-k)	0	1.0	1.7	2.2	2.4	2.6	2.7	2.6	2.5	2.2
V _{u,soil} (k)	0	-0.5	-1.0	-1.4	-1.6	-1.8	-1.9	-2.1	-2.2	-2.3
ΣM_u (ft-k)	0	1.0	1.6	1.9	1.9	2.9	2.6	1.9	1.1	0
ΣV_u (kips)	0	-0.3	-0.6	-0.8	-0.8	-0.3	-0.3	-0.3	-0.2	0

DESIGN FLEXURE

Location	M _{u,max}	d (in)	P _{min}	P _{reqD}	P _{max}	s _{max}	use	P _{provD}
Top Longitudinal	0.2	ft-k	9.75	0.0000	0.0000	no limit	1 # 4	0.0006
Bottom Longitudinal	2.9	ft-k	8.75	0.0003	0.0002	0.0129	3 # 4 @ 15 in o.c.	0.0019
Bottom Transverse	0	ft-k / ft	8.50	0.0000	0.0000	0.0129	18	3 # 4 @ 15 in o.c.

[Satisfactory]

CHECK FLEXURE SHEAR

Direction	V _{u,max}	$\phi V_c = 2 \phi b d (f'_c)^{0.5}$	check V _u < ϕV_c
Longitudinal	0.9 k	24 k	[Satisfactory]
Transverse	0.1 k / ft	8 k / ft	[Satisfactory]

CHECK PUNCHING SHEAR (ACI 318 13.2.7.2, 22.6.4.1, 22.6.4.3, & 8.4.2.3)

$$v_{uL} (\text{psi}) = \frac{P_u - R}{AP} + \frac{0.5\gamma_v M_{ub} b_1}{J}$$

$$AP = 2(b_1 + b_2)d$$

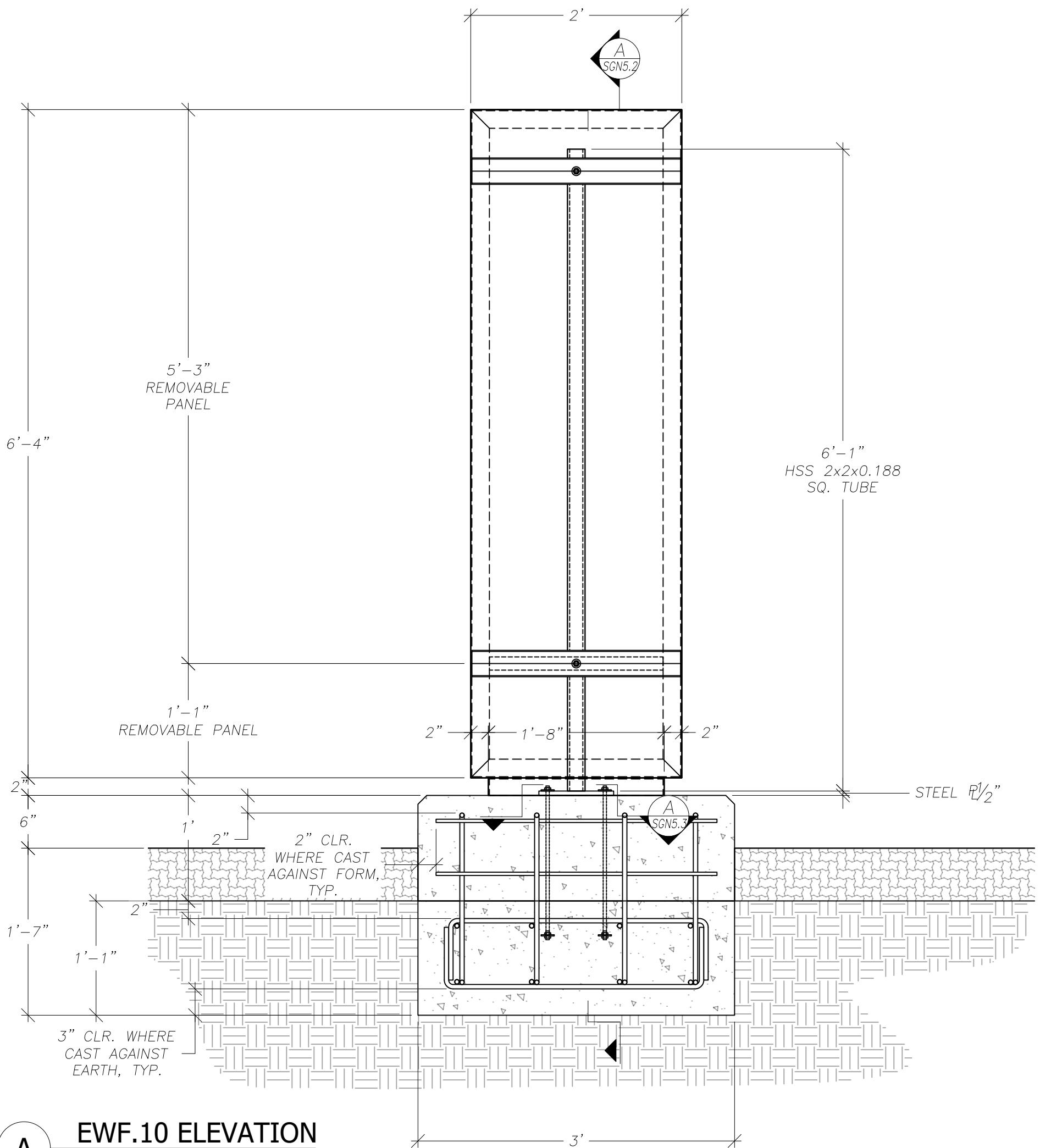
$$J = \left(\frac{db_1^3}{6} \right) \left[1 + \left(\frac{d}{b_1} \right)^2 + 3 \left(\frac{b_2}{b_1} \right) \right]$$

$$\gamma_v = 1 - \frac{1}{1 + \frac{2}{3} \sqrt{\frac{b_1}{b_2}}}$$

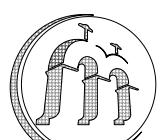
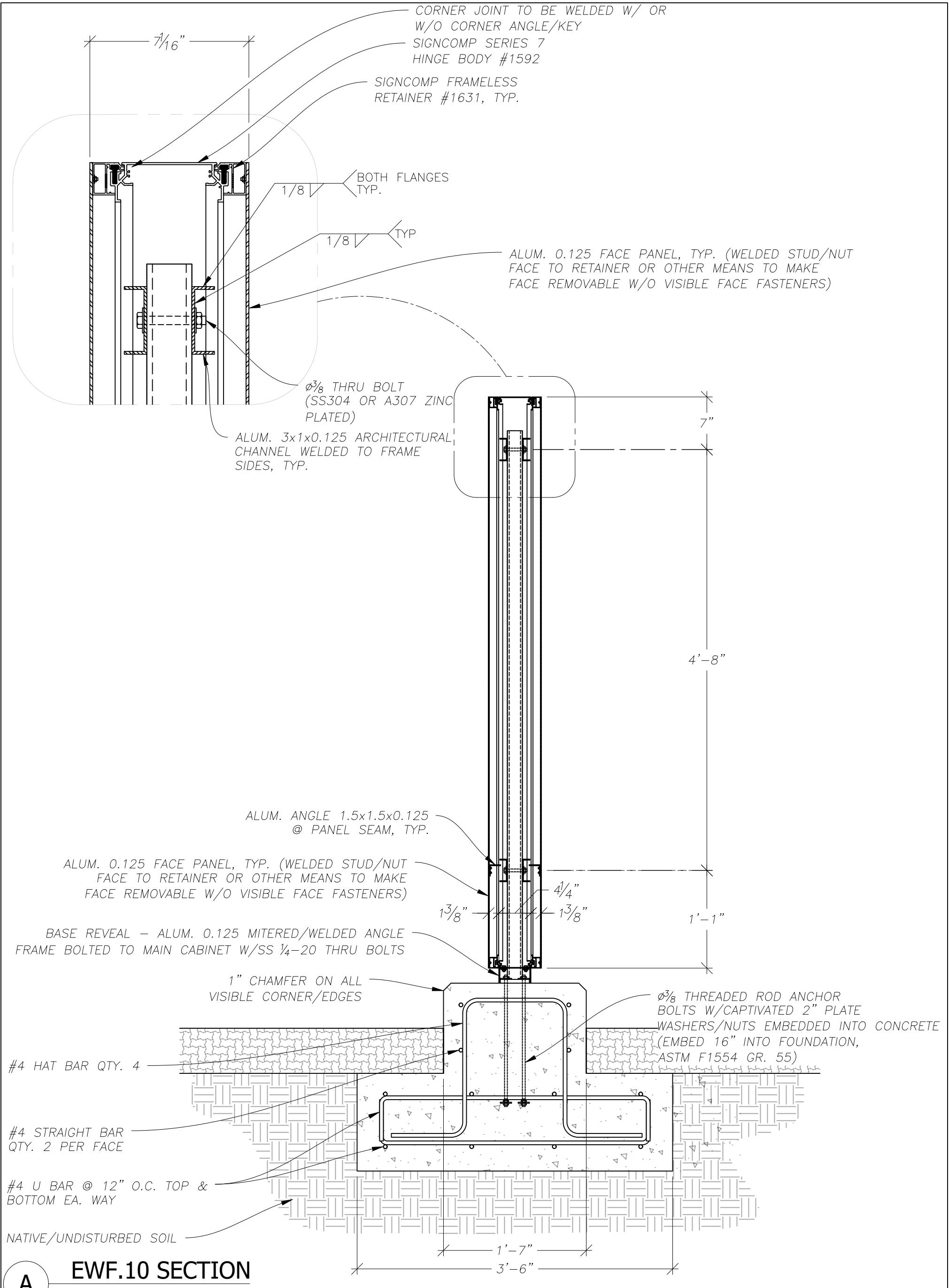
$$A_f = BL$$

$$\phi v_c (\text{psi}) = \phi (2 + y) \sqrt{f'_c}$$

$$y = \text{MIN} \left(2, \frac{4}{\beta_c}, 40 \frac{d}{b_0} \right)$$


$$b_0 = \frac{AP}{d}, b_1 = (0.5c_1 + 0.5b_1 + d), b_2 = (0.5c_2 + 0.5b_2 + d)$$

Case	P _u	M _u	b ₁	b ₂	b ₀	γ_v	β_c	y	A _f	A _p	R	J	V _u (psi)	ϕV_c
1	0.8	0.0	12.0	12.0	0.3	0.4	1.0	2.0	9.0	2.8	0.1	0.5	1.7	150.0
2	0.8	0.9	12.0	12.0	0.3	0.4	1.0	2.0	9.0	2.8	0.1	0.5	1.7	150.0
3	0.6	0.9	12.0	12.0	0.3	0.4	1.0	2.0	9.0	2.8	0.1	0.5	1.3	150.0



[Satisfactory]

where $\phi = 0.75$, (ACI 318 21.2)

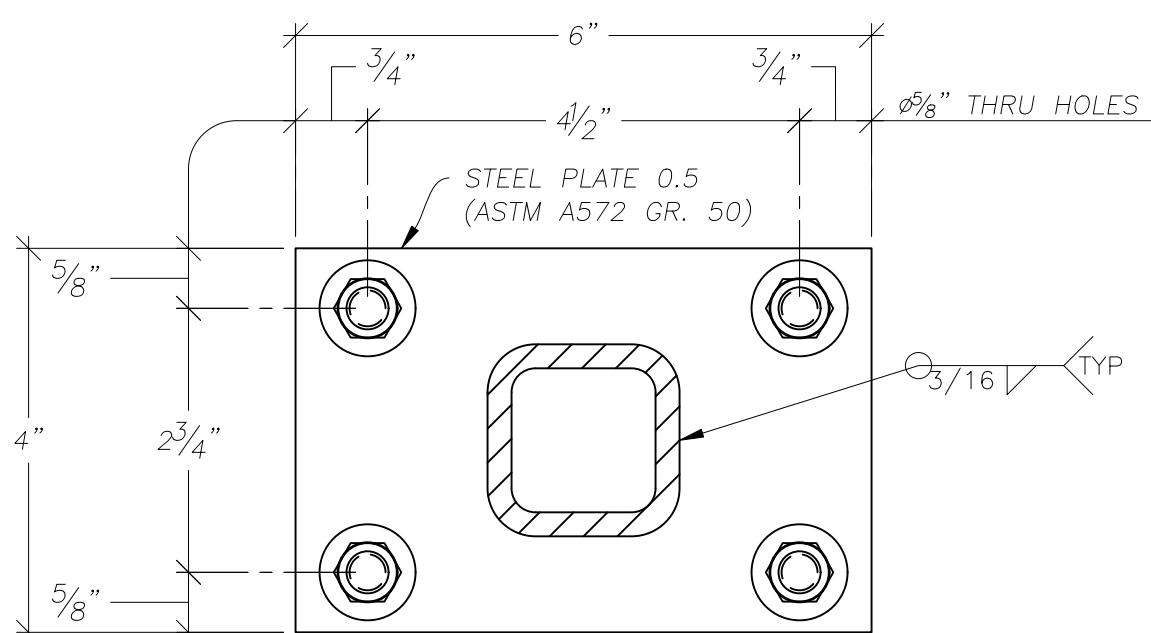
NOTE: PEDESTAL/PLINTH TO BE FORMED W/ BOARD FORM OR BOARD FORM LINER. PATTERN T.B.D.

A

**MISSION
STRUCTURE
ENGINEERING**
 779 N. KATHLEEN LN. UNIT A
 ORANGE, CA 92867
 INFO@MISSIONSTRUCTURE.COM
 510.593.5022

ISSUED FOR 1st Submission REV 0 DATE 1/15/26

SEALS AND SIGNATURES

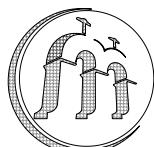


SHANNON LEIGH
 STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
 510.969.7870 info@shannonleigh.net

PROJECT INFORMATION
Las Positas College
 3000 Campus Hill Drive
 Livermore, CA 94551

PROJECT NUMBER
DRAWING TITLE
EWF.10 Section
DRAWING NUMBER
SGN5.2


NOTE: MAY USE TRIANGULAR
STIFFENER/GUSSET FOR
IMPROVED FIT UP

A

BASEPLATE TYPE 2

SCALE: 6"=1'

NOTE: APPLY HEAVY EPOXY
PRIMER TO ALL SURFACES OF
BASEPLATES

**MISSION
STRUCTURE
ENGINEERING**
779 N. KATHLEEN LN. UNIT A
ORANGE, CA 92867
INFO@MISSIONSTRUCTURE.COM
510.593.5022

ISSUED FOR REV DATE
1st Submission 0 1/15/26

CLIENT INFORMATION

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

PROJECT INFORMATION
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

PROJECT NUMBER
EWF.10
DRAWING TITLE
Details
DRAWING NUMBER
SGN5.3

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	1 / 5
Section	Freestanding EWF.10			Job No.

Freestanding Monument Sign

Project Location:
3000 Campus Hill Drive
Livermore, CA 94551

for

Shannon-Leigh Associates, LLC
1455 Hays Street
San Leandro, CA 94577

Scope of design:

Design of freestanding monument sign anchorage & foundation. Design includes load analysis, base plate/anchor bolt design & footing design. Design Criteria based on geotechnical report by Ninyo & Moore dated November 22, 2023.

Current Codes Which Shall Apply (As applicable to project):

CBC 2025, ASCE 7-22, AISC 360-22, ACI 318-19, AA ADM1 2020,

Dead Load

Total Sign Weight:

$$DL = \text{Total Weight} = 145.75 \text{ lbf}$$

Alum. Cabinet Weight:

$$DL_{\text{cab}} = \text{Weight.F14} = 80.75 \text{ lbf}$$

Seismic Load (Full Sign Mass)

Seismic Loads

Seismic Loads of Non-Building Structures

ASCE 7-16 Chapter 15

Seismic Base Shear:

$$V_B = C_s * W_p$$

$$R = 3$$

$$SDS = 1.36$$

$$I = 1.25$$

$$W_p = 145.75 \text{ lbf}$$

Seismic Response Coefficient:

$$C_s = \frac{SDS}{R} = 0.567$$

Seismic Base Shear:

$$V_B = C_s * W_p = 82.592 \text{ lbf}$$

Overstrength Factor, Ω (where applicable): OS = 1.75

Load Distribution

Per ASCE Chapter 29

Top of Sign Height:

$$h = s = 7 \text{ ft}$$

Cabinet Height:

$$h_c = \text{Weight.C2} = 6.5 \text{ ft}$$

Pedestal Height:

$$h_p = 0.5 \text{ ft}$$

Sign Height:

$$s = h_c + h_p = 7 \text{ ft}$$

Sign Width (Breadth):

$$B = \text{Weight.E2} = 2 \text{ ft}$$

Number of Posts:

$$n_p = 1$$

Gross Sign Area:

$$A_g = s * B = 14 \text{ ft}^2$$

Tributary Area (single post):

$$A_n = A_g = 14 \text{ ft}^2$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	2 / 5
Section	Freestanding EWF.10			Job No.

Moment Arm (@ baseplate):

$$arm_1 = 1.05 * \left(\frac{h_c}{2} \right) = 3.413 \text{ ft}$$

Moment Arm (@ top of ftg.):

$$arm_T = 1.05 * \left(\frac{s}{2} \right) + 0.5 \text{ ft} = 4.175 \text{ ft}$$

Wind Pressure:

Wind Load Section 1:

Wind Moment Section 1:

Wind Torsion:

Seismic Load on Section 1 (alum. cab.):

Seismic Load Section 1 w/ Over strength:

EQ Lateral Shear Force @ baseplate:

EQ Lateral Force Moment:

EQ Lateral Force w/ OS:

EQ Lateral Force Moment w/OS:

$$EQ_{s1} = EQ2.C_s * DL = 82.592 \text{ lbf}$$

$$EQ_{s1os} = EQ_{s1} * EQ2.OS = 144.535 \text{ lbf}$$

$$V_{1eq} = EQ_{s1} = 82.592 \text{ lbf}$$

$$M_{1eq} = V_{1eq} * arm_1 = 281.844 \text{ lbf * ft}$$

$$V_{1eqos} = EQ_{s1os} = 144.535 \text{ lbf}$$

$$M_{1eqos} = V_{1eqos} * arm_1 = 493.227 \text{ lbf * ft}$$

LRFD Load Combinations (as applicable-anchorage)

LC: 0.9 DL + 1.0 W

Dead Load:

$$DL_{min} = \frac{0.9 * (DL_{cab})}{n_p} = 72.675 \text{ lbf}$$

Shear Wind:

Moment Wind:

$$V_{1w1} = W_{11} = 350 \text{ lbf}$$

$$M_{1w1} = V_{1w1} * arm_1 = 1194.375 \text{ lbf * ft}$$

LC: 1.2 DL + 1.0 W

Dead Load:

$$DL_{max} = \frac{1.2 * (DL_{cab})}{n_p} = 96.9 \text{ lbf}$$

Shear Wind:

Moment Wind:

$$V_{1w2} = W_{11} = 350 \text{ lbf}$$

$$M_{1w2} = V_{1w2} * arm_1 = 1194.375 \text{ lbf * ft}$$

LC: 0.9 DL - 1.0 E_v + E_{mh}

Dead Load:

$$DL_{eqmin} = \frac{0.9 * (DL_{cab})}{n_p} = 72.675 \text{ lbf}$$

Vertical Seismic:

$$E_{v1} = \frac{-0.2 * EQ2.SDS * (DL_{cab})}{n_p} = -21.964 \text{ lbf}$$

Shear EQ:

$$V_{1eq1} = \frac{EQ_{s1os}}{n_p} = 144.535 \text{ lbf}$$

Moment EQ:

$$M_{1eq1} = \left(\frac{EQ_{s1os}}{n_p} \right) * arm_1 = 493.227 \text{ lbf * ft}$$

LC: 1.2 DL + 1.0 E_v + E_{mh}

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	3 / 5
Section	Freestanding EWF.10			Job No.

Dead Load:

$$DL_{1eqmax} = \frac{1.2 * (DL_{cab})}{n_p} = 96.9 \text{ lbf}$$

Vertical Seismic:

$$E_{v2} = \frac{0.2 * EQ2.SDS * (DL_{cab})}{n_p} = 21.964 \text{ lbf}$$

Shear EQ:

$$V_{eq2} = \frac{EQ_{s1os}}{n_p} = 144.535 \text{ lbf}$$

Moment EQ:

$$M_{eq2} = \frac{EQ_{s1os} * arm_1}{n_p} = 493.227 \text{ lbf * ft}$$

ASD Load Combinations

(Note: Omit axial loads on post-no restoring moment weld design)

LC: DL + 0.6 W

LC: DL + 0.7 (E_v + E_{mh})

Convert to ASD/service level loads

Vertical Load, ASD:

$$DL_{S1} = DL = 145.75 \text{ lbf}$$

Wind Pressure, ASD:

$$p_{wasd} = p_w * 0.6 = 15 \text{ psf}$$

Wind Load, ASD:

$$W_{lasd} = p_{wasd} * A_n = 210 \text{ lbf}$$

Wind Force Moment, ASD:

$$M_{wasd} = arm_1 * W_{lasd} = 716.625 \text{ ft * lbf}$$

Wind Torsion, ASD:

$$T_{asd} = T_w * 0.6 = 84 \text{ ft * lbf}$$

Max. Vertical Load, ASD:

$$DL_{eqasd} = \frac{DL_{S1} + 0.7 * 0.2 * EQ2.SDS * DL_{S1}}{n_p} = 173.501 \text{ lbf}$$

Seismic Load, ASD:

$$EQ_{asd} = \frac{EQ2.V_B * 0.7}{n_p} = 57.814 \text{ lbf}$$

Seismic Load w/ OS, ASD:

$$EQ_{osasd} = EQ_{asd} * EQ2.OS = 101.175 \text{ lbf}$$

Seismic Force Moment, ASD:

$$M_{eqasd} = arm_1 * EQ_{asd} = 197.291 \text{ ft * lbf}$$

Seismic Force Moment w/ OS, ASD:

$$M_{eqasdos} = EQ_{osasd} * arm_1 = 345.259 \text{ lbf * ft}$$

Weld Connection From Post to Base Plate

Tube Depth:

$$d_{tube} = 2 \text{ in}$$

Tube Breadth:

$$b_{tube} = 2 \text{ in}$$

Tube Wall Thickness:

$$t_{tube} = 0.188 \text{ in}$$

Weld Line Section Modulus:

$$S_w = d_{tube} * b_{tube} + \frac{d_{tube}^2}{3} = 5.333 \text{ in}^2$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	4 / 5
Section	Freestanding EWF.10			Job No.

Weld Line Area:

$$A_w = d_{tube} * 2 + b_{tube} * 2 = 8 \text{ in}$$

Fillet Weld Design (AISC 360 Section J2.4 or ADM J.2)

Weld to resist loads V & M.

Material = "Steel"

Weld Group Configuration:

Type = "sq 2x2x0.188"

Input Weld Shear Load:

$$V = W_{lasd} = 210 \text{ lbf}$$

Input Weld Moment Load:

$$M = M_{wasd} = 716.625 \text{ ft * lbf}$$

Weld Line Section Modulus (bending):

$$S_w = \text{Report1}.S_w = 5.333 \text{ in}^2$$

Weld Line Section Modulus (shear):

$$A_w = \text{Report1}.A_w = 8 \text{ in}$$

Required Strength:

$$R = \sqrt{\left(\frac{V}{A_w}\right)^2 + \left(\frac{M}{S_w}\right)^2} = 1612.6 \frac{\text{lb}}{\text{in}}$$

Weld Electrode Tensile Strength:

$$f_u = 70 \text{ ksi}$$

Weld Factor of Safety:

$$\Omega_w = 2$$

$$R_n = \begin{cases} \left(\frac{0.707 * f_u * 0.6 * \left(\frac{1 \text{ in}}{16} \right)}{\Omega_w} \right) & \text{if Material == "Steel"} \\ \left(\frac{0.707 * 0.85 * f_u * 0.6 * \left(\frac{1 \text{ in}}{16} \right)}{\Omega_w} \right) & \text{otherwise} \end{cases} = 927.9 \frac{\text{lb}}{\text{in}}$$

Strength of Weld per inch:

$$a_{req} = \text{RoundUp}\left(\frac{R}{R_n}\right) = 2/16" \text{ Weld Leg Size}$$

Required Size of Weld:

Foundation Loads

Spread Footing Foundation

Nominal loads for allowable capacities per geotechnical report. Seismic Loads to have omega/overstrength applied (cantilever foundation system). Design provided in design worksheet to follow.

Width of Footing:

$$W_{ftg} = 3 \text{ ft}$$

Length of Footing:

$$l_{ftg} = 3 \text{ ft}$$

Width of Pedestal:

$$W_{ped} = 2 \text{ ft}$$

Length of Pedestal:

$$l_{ped} = 3 \text{ ft}$$

Height of Pedestal:

$$H_{ped} = 12 \text{ in}$$

Weight of Concrete Pedestal:

$$W_{ped} = W_{ped} * l_{ped} * H_{ped} * 150 \text{ pcf} = 900 \text{ lbf}$$

LC: 0.9 DL + W

(nominal values for foundation software shown below)

Vertical Force:

$$A_1 = 0.9 * (DL + W_{ped}) = 941.175 \text{ lbf}$$

Horizontal Force:

$$P_1 = (B * s * p_w) = 350 \text{ lbf}$$

Moment:

$$M_1 = P_1 * \text{arm}_T = 1461.25 \text{ lbf * ft}$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	5 / 5
Section	Freestanding EWF.10			Job No.

LC: $0.9 \text{ DL} + (E_v + E_{mh})$

(nominal values for foundation software shown below)

DL Vertical Force:

$$A_2 = 0.9 * (\text{DL} + \text{Wt}_{\text{ped}}) = 941.175 \text{ lbf}$$

EQ Vertical Force:

$$A_3 = (-0.2 * \text{EQ2.SDS} * (\text{DL} + \text{Wt}_{\text{ped}})) = -284.444 \text{ lbf}$$

Horizontal Forces:

Sign Cabinet:

$$P_2 = \text{EQ2.V}_B * \text{EQ2.OS} = 144.535 \text{ lbf}$$

Sign Cabinet moment arm:

$$a_2 = \text{arm}_T = 4.175 \text{ ft}$$

Sign Cabinet moment:

$$M_2 = P_2 * a_2 = 603.435 \text{ lbf * ft}$$

Combined EQ Axial:

$$A_{\text{eq}} = A_2 + A_3 = 656.731 \text{ lbf}$$

Combined EQ Shear:

$$V_{\text{eq}} = P_2 = 144.535 \text{ lbf}$$

Combined EQ Moment:

$$M_{\text{eq}} = M_2 = 603.435 \text{ lbf * ft}$$

Weight Takeoff

Component	Height:	6.5 ft		Width:	2 ft	
	Unit Wt	Unit Qty	Wt	Qty	Weight	
Skin	2 psf	13 ft ²	26 lbf	2	52 lbf	
Post	10 plf	6.5 ft	65 lbf	1	65 lbf	
Channel Extrusion	1.5 plf	17 ft	25.5 lbf	1	25.5 lbf	
Misc Framing/Stiffeners	0.25 psf	13 ft ²	3.25 lbf	1	3.25 lbf	

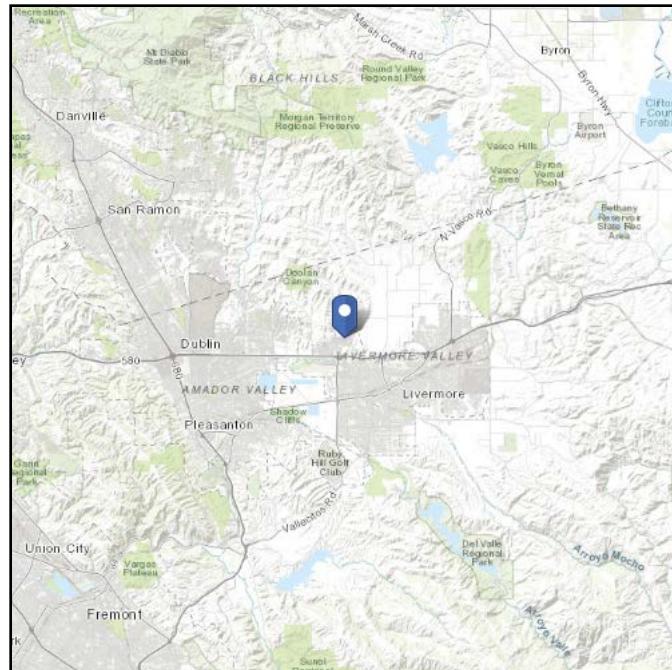
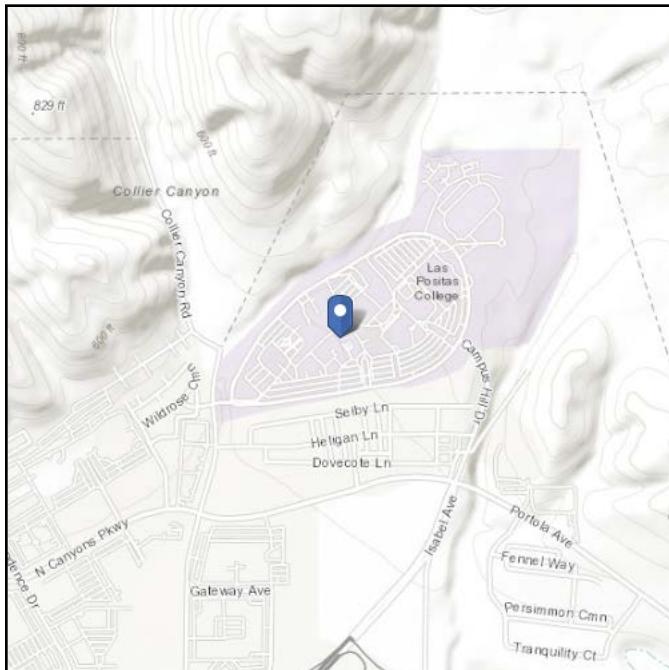
Cabinet Wt.: 80.75 lbf

Total: 145.8 lbf

ASCE Hazards Report

Address:

Las Positas College - 3000
Campus Hill Drive
Livermore,



Standard: ASCE/SEI 7-22

Risk Category: III

Soil Class: D - Stiff Soil

Latitude: 37.710873

Longitude: -121.80058

Elevation: 480.38484203241944 ft
(NAVD 88)

Wind

Results:

Wind Speed	99 Vmph
10-year MRI	64 Vmph
25-year MRI	70 Vmph
50-year MRI	75 Vmph
100-year MRI	79 Vmph
300-year MRI	87 Vmph
700-year MRI	93 Vmph
1,700-year MRI	99 Vmph
3,000-year MRI	103 Vmph
10,000-year MRI	113 Vmph
100,000-year MRI	129 Vmph
1,000,000-year MRI	147 Vmph

Data Source:

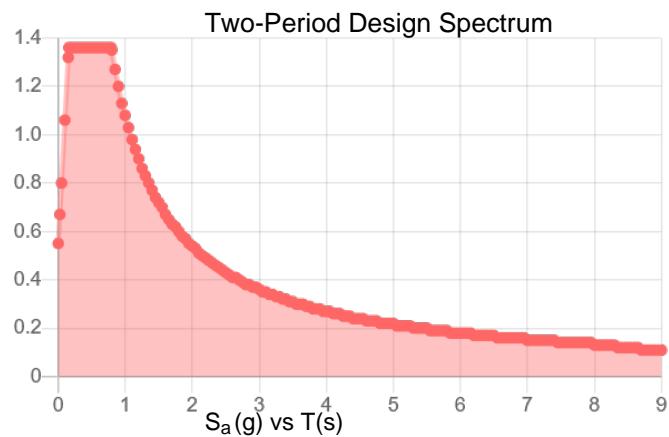
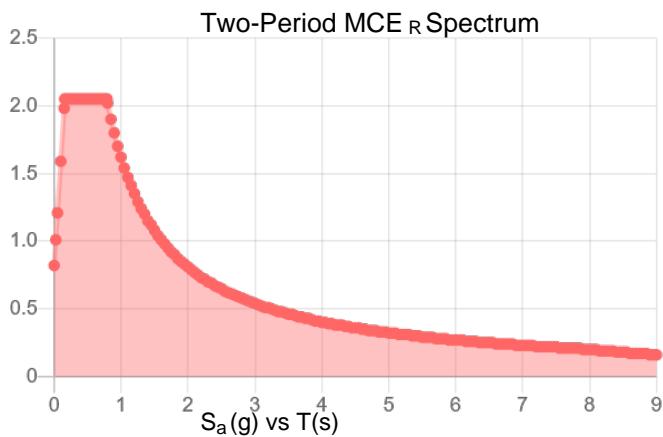
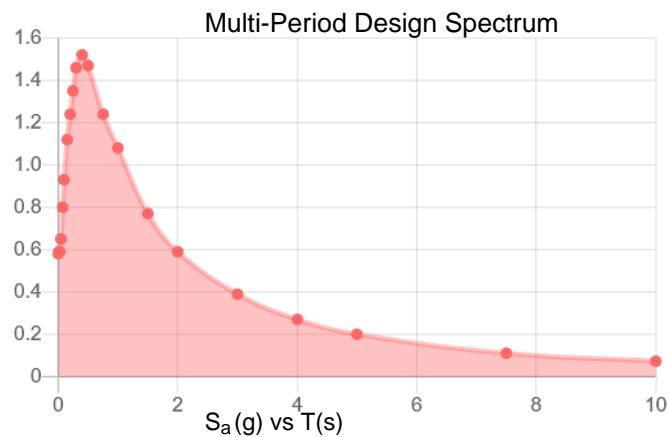
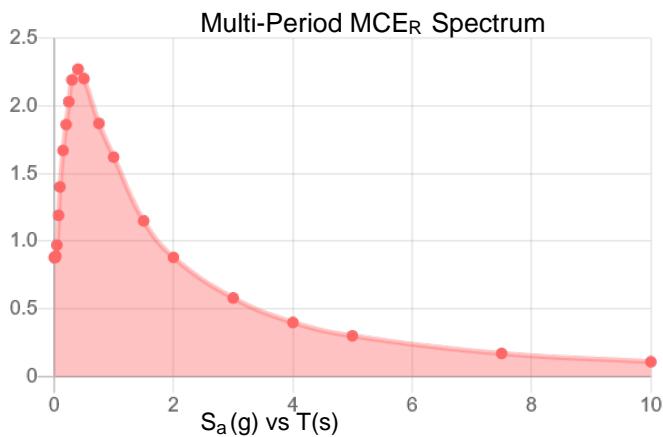
ASCE/SEI 7-22, Fig. 26.5-1C and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed:

Mon Nov 24 2025

AMERICAN SOCIETY OF CIVIL ENGINEERS

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-22 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years). Values for 10-year MRI, 25-year MRI, 50-year MRI and 100-year MRI are Service Level wind speeds, all other wind speeds are Ultimate wind speeds.





Site is not in a hurricane-prone region as defined in ASCE/SEI 7-22 Section 26.2.

Site Soil Class: D - Stiff Soil

Results:

PGA _M :	0.73	T _L :	8
S _{MS} :	2.05	S _S :	2.13
S _{M1} :	1.62	S ₁ :	0.81
S _{DS} :	1.36	V _{S30} :	260
S _{D1} :	1.08		

Seismic Design Category: E

MCE_R Vertical Response Spectrum
Vertical ground motion data has not yet been made available by USGS.

Design Vertical Response Spectrum
Vertical ground motion data has not yet been made available by USGS.

Data Accessed: **Mon Nov 24 2025**

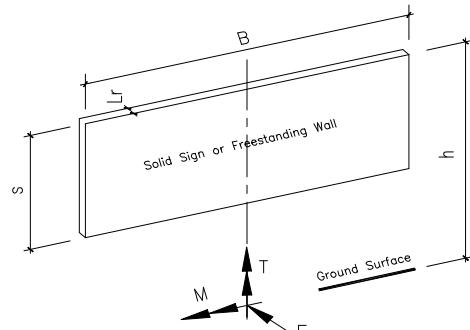
Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-22 and ASCE/SEI 7-22 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-22 Ch. 21 are available from USGS.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.



Wind Analysis for Freestanding Wall & Sign Based on ASCE 7-22

Monument Sign Wind Pressure

INPUT DATA

Exposure category (B, C or D)	=	C
Importance factor, 1.0 only, (Table 1.5-2)	I _w =	1.00
Basic wind speed (ASCE 7 26.5.1)	V =	99 mph, (159.32 kph)
Topographic factor (26.8 & Table 26.8-1)	K _{zt} =	1 Flat
Height of top	h =	11 ft, (3.35 m)
Vertical dimension (for wall, s = h)	s =	11 ft, (3.35 m)
Horizontal dimension	B =	4 ft, (1.22 m)
Dimension of return corner	L _r =	0 ft, (0.00 m)

DESIGN SUMMARY

Max horizontal wind pressure	p =	25 psf, (1177 N/m ²)
Max total horizontal force at centroid of base	F =	1.08 kips, (5 kN)
Max bending moment at centroid of base	M =	6.54 ft-kips, (9 kN-m)
Max torsion at centroid of base	T =	0.87 ft-kips, (1 kN-m)

ANALYSIS

Velocity pressure

$$q_h K_d = (0.00256 K_z K_{zt} K_e V^2) K_d = 18.13 \text{ psf}$$

where: q_h = velocity pressure at mean roof height, h . (Eq. 26.10-1 page 277), $K_e = 1.00$, (Tab. 26.9-1 page 275)

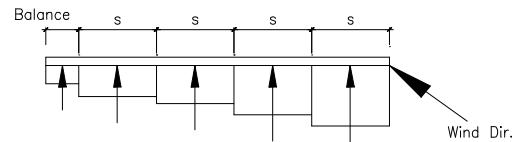
K_z = velocity pressure exposure coefficient evaluated at height, h , (Tab. 26.10-1, pg 277) = 0.85

K_d = wind directionality factor. (Tab. 26.6-1, page 274) = 0.85

h = height of top = 11.00 ft

Wind Force Case A: resultant force through the geometric center (Sec. 29.3.1)

p = $q_h K_d G C_N$	=	25 psf
F = p A _s	=	1.08 kips
M = F (h - 0.5s) for sign, F (0.55h) for wall	=	6.54 ft-kips
T =	=	0.00 ft-kips
where: G = gust effect factor. (Sec. 26.9)	=	0.85
C _f = net force coefficient. (Fig. 29.3-1, page 301)	=	1.60
A _s = B s	=	44.0 ft ²


Wind Force Case B: resultant force at 0.2 B offset of the geometric center (Sec. 29.3.1)

p = Case A	=	25 psf
F = Case A	=	1.08 kips
M = Case A	=	6.54 ft-kips
T = 0.2 F B	=	0.87 ft-kips

Wind Force Case C: resultant force different at each region (Sec. 29.4.1)

p = $q_h G C_f$		
F = $\sum p A_s$		
M = $\sum [F (h - 0.5s) \text{ for sign, } F (0.55h) \text{ for wall}]$		
T = $\sum T_s$		

Distance	C _f	P _i	A _{si}	F _i	M _i	T _i
(ft)	(Fig. 29.3-1)	(psf)	(ft ²)	(kips)	(ft-kips)	(ft-kips)
4.0	1.800	28	44	1.22	7.38	0.00
Σ						
4.0	1.200	18	0	0.00	0.00	0.00
Σ				1.22	7.38	0.00

<== Case C may not be considered, footnote 3 of Fig. 6-20

PROJECT : Las Positas
CLIENT :
JOB NO. : DATE :

PAGE :
DESIGN BY :
REVIEW BY :

HSS (Tube, Pipe) Member Design with Torsional Loading Based on AISC 360-10/16

EWF.10 Post DL+W

INPUT DATA & DESIGN SUMMARY

MEMBER SHAPE (Tube or Pipe) & SIZE

HSS2X2X3/16

<== Tube

STEEL YIELD STRESS

$F_y = 46$ ksi, (317 MPa)

TORSIONAL FORCE

$T_r = 0.084$ ft-kips, (0 kN-m), ASD

AXIAL COMPRESSION FORCE

$P_r = 0.145$ kips, (1 kN), ASD

STRONG AXIS EFFECTIVE LENGTH

$kL_x = 12$ ft, (3.66 m)

WEAK AXIS EFFECTIVE LENGTH

$kL_y = 12$ ft, (3.66 m)

STRONG AXIS BENDING MOMENT

$M_{rx} = 0.717$ ft-kips, (1 kN-m), ASD

STRONG AXIS BENDING UNBRACED LENGTH

$L_b = 6.5$ ft, (1.98 m), (AISC 360 F2.2.c)

STRONG DIRECTION SHEAR LOAD, ASD

$V_{strong} = 0.21$ kips, (1 kN)

WEAK AXIS BENDING MOMENT

$M_{ry} = 0$ ft-kips, (0 kN-m), ASD

WEAK DIRECTION SHEAR LOAD, ASD

$V_{weak} = 0$ kips, (0 kN)

THE DESIGN IS ADEQUATE.

ANALYSIS

CHECK TORSIONAL CAPACITY (AISC 360 H3.1)

$$T_c = \frac{1}{\Omega_T} T_n = \frac{1}{\Omega_T} \begin{cases} \left[0.6F_y, \text{ for } \frac{h}{t} \leq 2.45\sqrt{\frac{E}{F_y}} \right] \\ \left[2(B-t)(H-t) - 4.5(4-\pi)t^3 \right] \left[0.6F_y 2.45\sqrt{\frac{E}{F_y}} \frac{t}{h}, \text{ for } \frac{h}{t} \leq 3.07\sqrt{\frac{E}{F_y}} \right], \text{ for HSS Tube} \\ \left[0.458 \frac{E\pi^2}{(h/t)^2}, \text{ for } \frac{h}{t} \leq 260 \right] \end{cases} = 1.7 \text{ ft-kips}$$

$$\frac{\pi(D-t)^2 t}{2} \text{ Max} \left[\frac{1.23E}{\sqrt{L} \left(\frac{D}{t} \right)^{(5/4)}}, \frac{0.60E}{\left(\frac{D}{t} \right)^{(3/2)}} \right], \text{ for HSS Pipe} > T_r \text{ [Satisfactory]}$$

Where $B = 2.00$ $H = 2.00$ $h = 1.44$ $t = 0.19$ $D = 29000$ $E = 29000$

$\Omega_T = 1.67$, ASD

CHECK COMBINED COMPRESSION AND BENDING CAPACITY (AISC 360 H1)

$$\begin{cases} \frac{P_r}{P_c} + 8 \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right), \text{ for } \frac{P_r}{P_c} \geq 0.2 \\ \frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right), \text{ for } \frac{P_r}{P_c} < 0.2 \end{cases} = 0.41 < 1.3 \text{ [Satisfactory]}$$

(2021 IBC, 1605.3.2)

Where $P_c = P_n / \Omega_c = 8 / 1.67 = 4.65$ kips, (AISC 360 Chapter E)

> P_r [Satisfactory]

$M_{cx} = M_n / \Omega_b = 3.06 / 1.67 = 1.83$ ft-kips, (AISC 360 Chapter F)

> M_{rx} [Satisfactory]

$M_{cy} = M_n / \Omega_b = 3.06 / 1.67 = 1.83$ ft-kips, (AISC 360 Chapter F)

> M_{ry} [Satisfactory]

CHECK SHEAR CAPACITY (AISC 360 G2)

$V_{n,strong} / \Omega_v = 13.8 / 1.67 = 8.3$ kips > $V_{strong} = 0.2$ kips [Satisfactory]

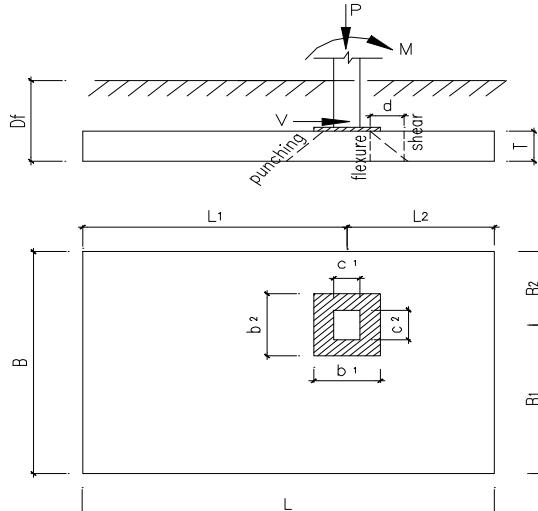
$V_{n,weak} / \Omega_v = 13.8 / 1.67 = 8.3$ kips > $V_{weak} = 0.0$ kips [Satisfactory]

CHECK COMBINED TORSION, SHEAR, COMPRESSION, AND BENDING CAPACITY (AISC 360 H3.2)

$$\begin{cases} \frac{P_r}{P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) + \left[\text{Max} \left(\frac{V_{strong}}{V_{c,strong}}, \frac{V_{weak}}{V_{c,weak}} \right) + \frac{T_r}{T_c} \right]^2, \text{ for } \frac{T_r}{T_c} > 0.2 \\ \text{Torsion Neglected, for } \frac{T_r}{T_c} \leq 0.2 \end{cases} = 0.0 < 1.3 \text{ [Satisfactory]}$$

(2021 IBC, 1605.3.2)

Eccentric Footing Design Based on ACI 318-19


EWF.10 0.9DL+W Spread Ftg.

INPUT DATA

COLUMN WIDTH	c_1	=	2	in
COLUMN DEPTH	c_2	=	2	in
BASE PLATE WIDTH	b_1	=	5	in
BASE PLATE DEPTH	b_2	=	5	in
FOOTING CONCRETE STRENGTH	f_c'	=	2.5	ksi
REBAR YIELD STRESS	f_y	=	60	ksi
AXIAL DEAD LOAD	P_{DL}	=	0.941	k
AXIAL LIVE LOAD	P_{LL}	=	0	k
LATERAL LOAD (0=WIND, 1=SEISMIC)		=	0	Wind, SD
WIND AXIAL LOAD	P_{LAT}	=	0	k, SD
WIND MOMENT LOAD	M_{LAT}	=	1.462	ft-k, SD
WIND SHEAR LOAD	V_{LAT}	=	0.35	k, SD
SURCHARGE	q_s	=	0	ksf
SOIL WEIGHT	w_s	=	0.11	kcf
FOOTING EMBEDMENT DEPTH	D_f	=	1.5	ft
FOOTING THICKNESS	T	=	12	in
ALLOWABLE SOIL PRESSURE	Q_a	=	2	ksf
FOOTING WIDTH	B_1	=	1.5	ft
	B_2	=	1.5	ft
FOOTING LENGTH	L_1	=	1.5	ft
	L_2	=	1.5	ft
REINFORCING SIZE		#	4	

DESIGN SUMMARY

FOOTING WIDTH	B	=	3.00	ft
FOOTING LENGTH	L	=	3.00	ft
FOOTING THICKNESS	T	=	12	in
LONGITUDINAL REINF., TOP	1 # 4			
LONGITUDINAL REINF., BOT.	3 # 4 @ 15 in o.c.			
TRANSVERSE REINF., BOT.	3 # 4 @ 15 in o.c.			

THE FOOTING DESIGN IS ADEQUATE.

ANALYSIS

DESIGN LOADS AT TOP OF FOOTING (IBC 1605.2 & ACI 318 5.3)

CASE 1:	DL + LL	P = 1 kips	1.2 DL + 1.6 LL	P _u = 1 kips
		M = 0 ft-kips		M _u = 0 ft-kips
		e = 0.0 ft, fr cl ftg		e _u = 0.0 ft, fr cl ftg
CASE 2:	DL + LL + 0.6(1.3) W	P = 1 kips	1.2 DL + LL + 1.0 W	P _u = 1 kips
		M = 1 ft-kips		M _u = 1 ft-kips
		V = 0 kips		V _u = 0 kips
CASE 3:	DL + LL + 0.6(0.65) W	P = 1 kips	0.9 DL + 1.0 W	P _u = 1 kips
		M = 1 ft-kips		M _u = 1 ft-kips
		V = 0 kips		V _u = 0 kips
		e = 0.9 ft, fr cl ftg		e _u = 1.7 ft, fr cl ftg

CHECK OVERTURNING FACTOR (2021 IBC 1605.2.1, 1808.3.1, & ASCE 7-22 12.13.4)

$M_R / M_O = 2.3 > F = 1.0 / 0.9 = 1.11$ [Satisfactory]

$$\text{Where } M_O = M_{LAT} + V_{LAT} T - P_{LAT} L_2 = 2 \text{ k-ft}$$

$$P_{ftq} = (0.15 \text{ kcf}) T B L = 1.35 \text{ k, footing weight}$$

$$P_{soil} = w_s (D_f - T) B L = 0.50 \quad k, \text{ soil weight}$$

$$M_R = P_{DL}L_2 + 0.5 (P_{fg} + P_{soil}) L = 4 \text{ k-ft}$$

FOR REVERSED LATERAL LOADS,

$M_R / M_O = 2.1 > F = 1.0 / 0.9$ [Satisfactory]

$$\text{Where } M_O = M_{LAT} + V_{LAT} D_f - P_{LAT} L_1 = 2 \text{ k-ft}$$

$$M_R = P_{DL}L_1 + 0.5 (P_{ftg} + P_{soil}) L = 4 \quad k\text{-ft}$$

CHECK SLIDING (2021 IBC 1807.2.3)

1.5 (V_{Lat, ASD}) = 0.315 kips < $\mu \Sigma W$ = 0.92 kips **[Satisfactory]**
 Where μ = 0.4

CHECK SOIL BEARING CAPACITY (ACI 318 13.3.1.1)

Service Loads	CASE 1	CASE 2	CASE 3	
P	0.9	0.9	0.9	
e	0.0	1.6	1.1	ft (from center of footing)
q _s B L	0.0	0	0.0	k, (surcharge load)
(0.15-w _s)T B L	0.4	0.4	0.2	k, (footing increased)
Σ P	1.3	1.3	1.2	k
e _L	0.0 < L/6	1.2 > L/6	0.9 > L/6	ft
e _B	0.0 < B/6	0.0 < B/6	0.0 < B/6	ft
q _L	0.4	2.8	1.2	k / ft
q _{max}	0.1	0.9	0.4	ksf
q _{allow}	2.0	2.7	2.7	ksf

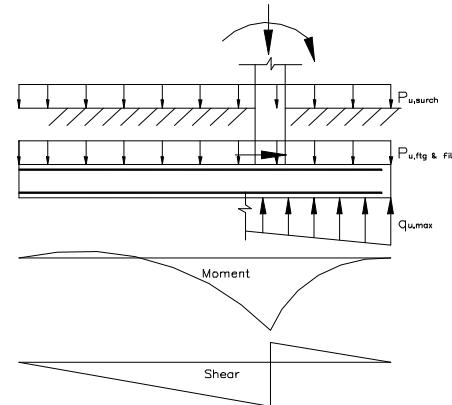
Where

$$q_L = \begin{cases} \frac{(\Sigma P) \left(1 + \frac{6e_L}{L}\right)}{L}, & \text{for } e_L \leq \frac{L}{6} \\ \frac{2(\Sigma P)}{3(0.5L - e_L)}, & \text{for } e_L > \frac{L}{6} \end{cases}$$

$$q_{MAX} = \begin{cases} \frac{q_L \left(1 + \frac{6e_B}{B}\right)}{B}, & \text{for } e_B \leq \frac{B}{6} \\ \frac{2q_L}{3(0.5B - e_B)}, & \text{for } e_B > \frac{B}{6} \end{cases}$$

[Satisfactory]

DESIGN FLEXURE & CHECK FLEXURE SHEAR


(ACI 318 13, 21, & 22)

$$q_{u,MAX} = \begin{cases} \frac{(\Sigma P_u) \left(1 + \frac{6e_u}{L}\right)}{BL}, & \text{for } e_u \leq \frac{L}{6} \\ \frac{2(\Sigma P_u)}{3B(0.5L - e_u)}, & \text{for } e_u > \frac{L}{6} \end{cases}$$

$$\rho_{MAX} = \frac{0.85 \beta_{lf} f_c}{f_y} \frac{\varepsilon_u}{\varepsilon_u + \varepsilon_t}$$

$$\rho = \frac{0.85 f_c \left(1 - \sqrt{1 - \frac{M_u}{0.383bd^2 f_c}}\right)}{f_y}$$

$$\rho_{MIN} = MIN \left(0.0018 \frac{T}{d}, \frac{4}{3} \rho \right)$$

FACTORED SOIL PRESSURE

Factored Loads	CASE 1	CASE 2	CASE 3	
P _u	1.1	1.1	0.8	k
e _u	0.0	1.6	2.1	ft
γ q _s B L	0.0	0.0	0.0	k, (factored surcharge load)
γ[0.15T + w _s (D _f - T)]BL	2.2	2.2	1.7	k, (factored footing & backfill loads)
Σ P _u	3.3	3.3	2.5	k
e _u	0.0 < L/6	0.5 > L/6	0.7 > L/6	ft
q _{u, max}	0.371	0.776	0.717	ksf

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 1

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.38	0.75	1.13	1.35	1.65	1.88	2.25	2.63	3.00
M _{u,col} (ft-k)	0	0	0	0	0	-0.2	-0.4	-0.8	-1.3	-1.7
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	1.1	1.1	1.1	1.1	1.1
P _{u,surch} (klf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (klf)	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
M _{u,fg & fill} (ft-k)	0	-0.1	-0.2	-0.5	-0.7	-1.0	-1.3	-1.9	-2.5	-3.3
V _{u,fg & fill} (k)	0	0.3	0.6	0.8	1.0	1.2	1.4	1.7	1.9	2.2
q _{u,soil} (ksf)	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37
M _{u,soil} (ft-k)	0	0.1	0.3	0.7	1.0	1.5	2.0	2.8	3.8	5.0
V _{u,soil} (k)	0	-0.4	-0.8	-1.3	-1.5	-1.8	-2.1	-2.5	-2.9	-3.3
Σ M _u (ft-k)	0	0.0	0.1	0.2	0.3	0.3	0.2	0.1	0.0	0
Σ V _u (kips)	0	-0.1	-0.3	-0.4	-0.5	0.5	0.4	0.3	0.1	0

(cont'd)

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 2

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.38	0.75	1.13	1.35	1.65	1.88	2.25	2.63	3.00
M _{u,col} (ft-k)	0	0	0	0	0	1.6	1.4	1.0	0.5	0.1
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	1.1	1.1	1.1	1.1	1.1
P _{u,surch} (klf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (klf)	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
M _{u,fg & fill} (ft-k)	0	-0.1	-0.2	-0.5	-0.7	-1.0	-1.3	-1.9	-2.5	-3.3
V _{u,fg & fill} (k)	0	0.3	0.6	0.8	1.0	1.2	1.4	1.7	1.9	2.2
q _{u,soil} (ksf)	0.00	0.10	0.19	0.29	0.35	0.43	0.48	0.58	0.68	0.78
M _{u,soil} (ft-k)	0	1.5	2.5	3.3	3.6	3.8	3.9	3.8	3.6	3.2
V _{u,soil} (k)	0	-0.8	-1.5	-2.1	-2.4	-2.7	-2.9	-3.2	-3.3	-3.3
ΣM_u (ft-k)	0	1.4	2.3	2.8	2.9	4.5	4.0	2.9	1.6	0
ΣV_u (kips)	0	-0.5	-0.9	-1.2	-1.4	-0.4	-0.4	-0.4	-0.2	0

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 3

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.38	0.75	1.13	1.35	1.65	1.88	2.25	2.63	3.00
M _{u,col} (ft-k)	0	0	0	0	0	1.7	1.5	1.2	0.9	0.5
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	0.8	0.8	0.8	0.8	0.8
P _{u,surch} (klf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (klf)	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
M _{u,fg & fill} (ft-k)	0	0.0	-0.2	-0.4	-0.5	-0.7	-1.0	-1.4	-1.9	-2.5
V _{u,fg & fill} (k)	0	0.2	0.4	0.6	0.7	0.9	1.0	1.2	1.5	1.7
q _{u,soil} (ksf)	0.00	0.00	0.18	0.27	0.32	0.39	0.45	0.54	0.63	0.72
M _{u,soil} (ft-k)	0	0.0	1.9	2.4	2.6	2.7	2.7	2.6	2.3	1.9
V _{u,soil} (k)	0	0.0	-1.2	-1.7	-1.9	-2.2	-2.3	-2.5	-2.5	-2.5
ΣM_u (ft-k)	0	0.0	1.7	2.0	2.1	3.6	3.2	2.3	1.3	0
ΣV_u (kips)	0	0.2	-0.8	-1.1	-1.2	-0.4	-0.4	-0.4	-0.2	0

DESIGN FLEXURE

Location	M _{u,max}	d (in)	P _{min}	P _{reqD}	P _{max}	s _{max}	use	P _{provD}
Top Longitudinal	0.0	ft-k	9.75	0.0000	0.0000	no limit	1 # 4	0.0006
Bottom Longitudinal	4.5	ft-k	8.75	0.0005	0.0004	0.0129	3 # 4 @ 15 in o.c.	0.0019
Bottom Transverse	0	ft-k / ft	8.50	0.0000	0.0000	0.0129	18	3 # 4 @ 15 in o.c.

[Satisfactory]

CHECK FLEXURE SHEAR

Direction	V _{u,max}	$\phi V_c = 2 \phi b d (f'_c)^{0.5}$	check V _u < ϕV_c
Longitudinal	1.4 k	24 k	[Satisfactory]
Transverse	0.2 k / ft	8 k / ft	[Satisfactory]

CHECK PUNCHING SHEAR (ACI 318 13.2.7.2, 22.6.4.1, 22.6.4.3, & 8.4.2.3)

$$v_{uL} (\text{psi}) = \frac{P_u - R}{AP} + \frac{0.5\gamma_v M_{ub1}}{J}$$

$$AP = 2(b_1 + b_2)d$$

$$\phi v_c (\text{psi}) = \phi(2 + y) \sqrt{f'_c}$$

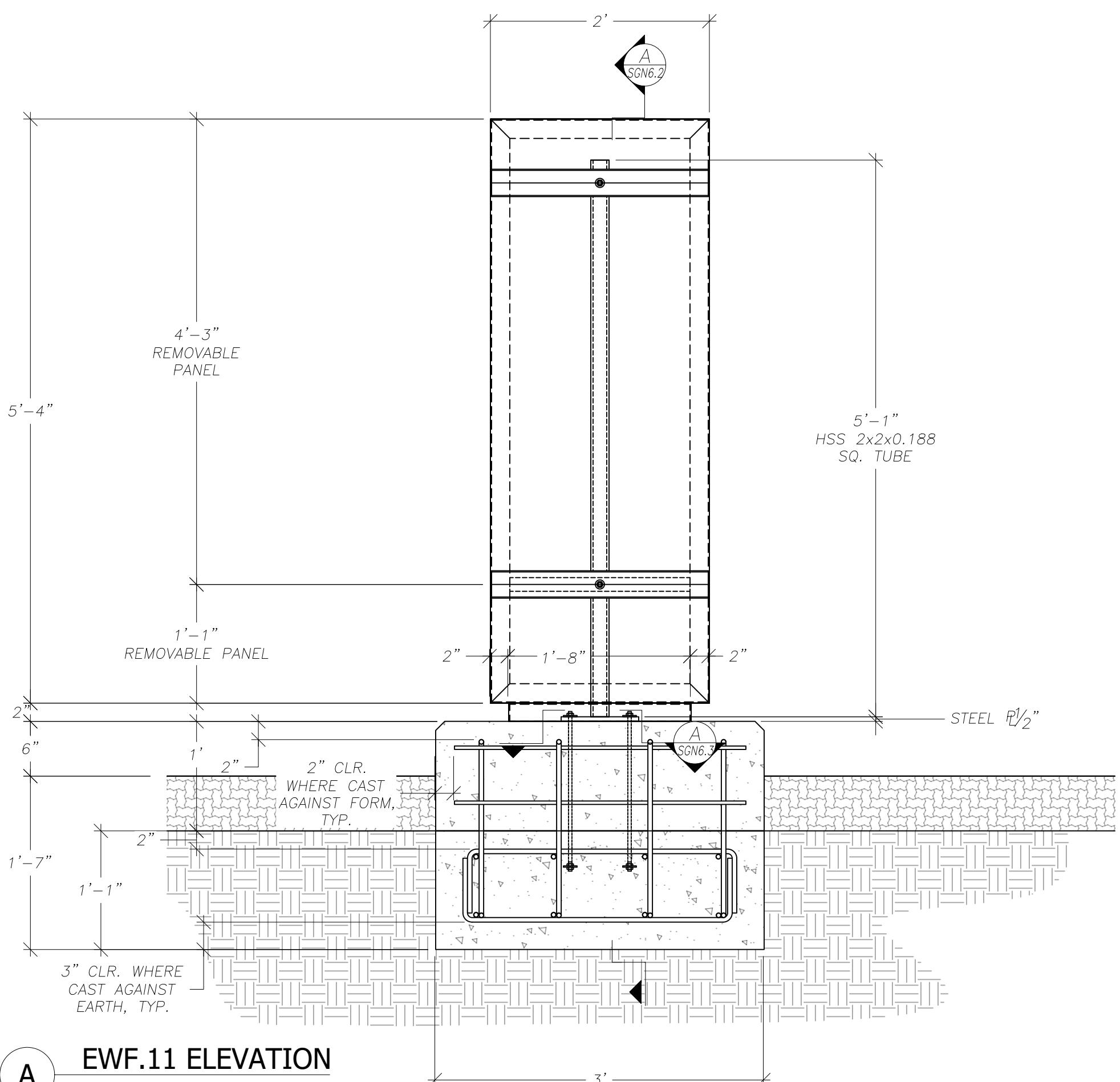
$$J = \left(\frac{db_1^3}{6} \right) \left[1 + \left(\frac{d}{b_1} \right)^2 + 3 \left(\frac{b_2}{b_1} \right) \right]$$

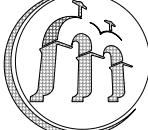
$$\gamma_v = 1 - \frac{1}{1 + \frac{2}{3} \sqrt{\frac{b_1}{b_2}}}$$

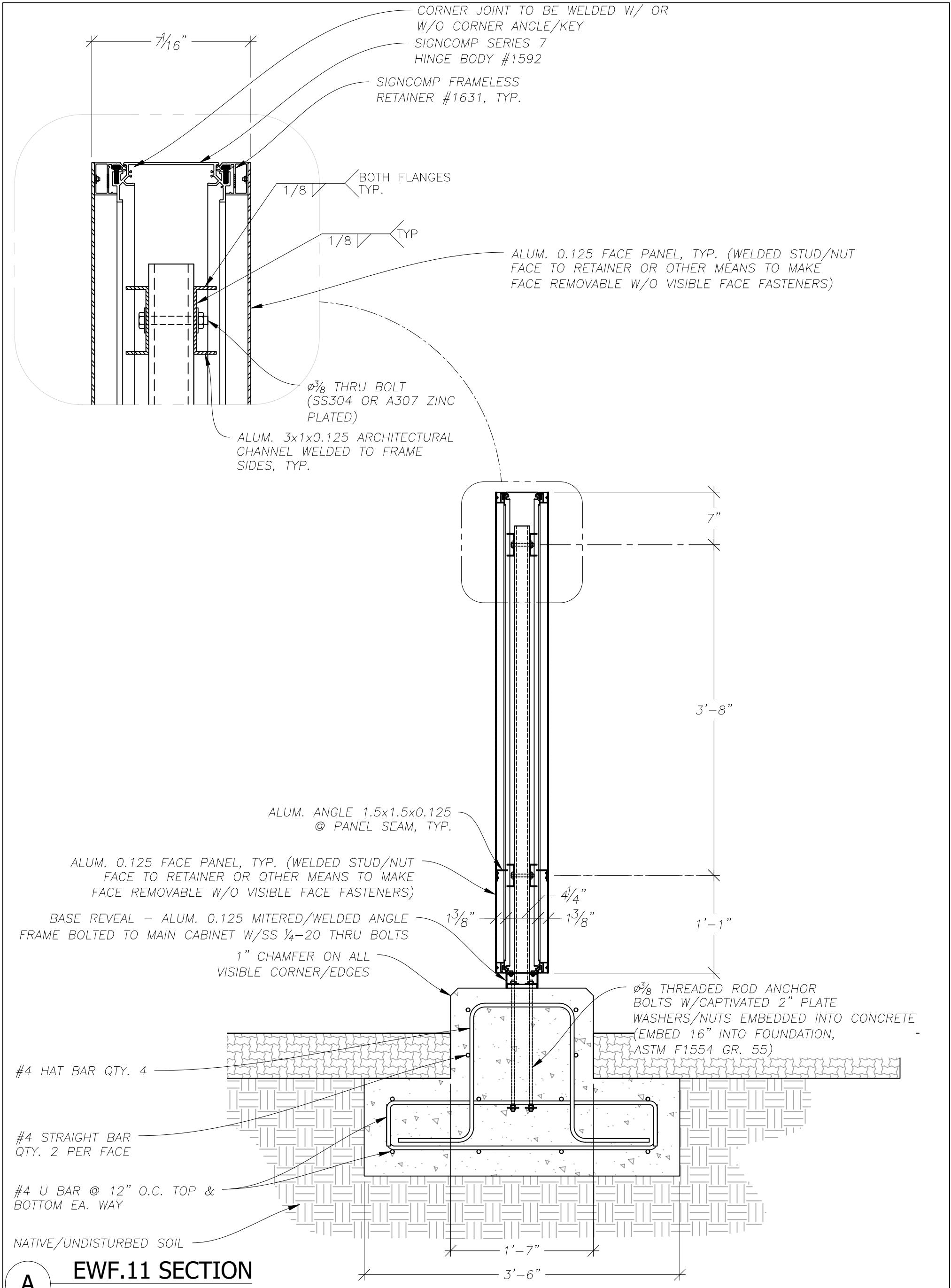
$$y = \text{MIN} \left(2, \frac{4}{\beta_c}, 40 \frac{d}{b_0} \right)$$

$$R = \frac{P_u b_1 b_2}{A_f}$$

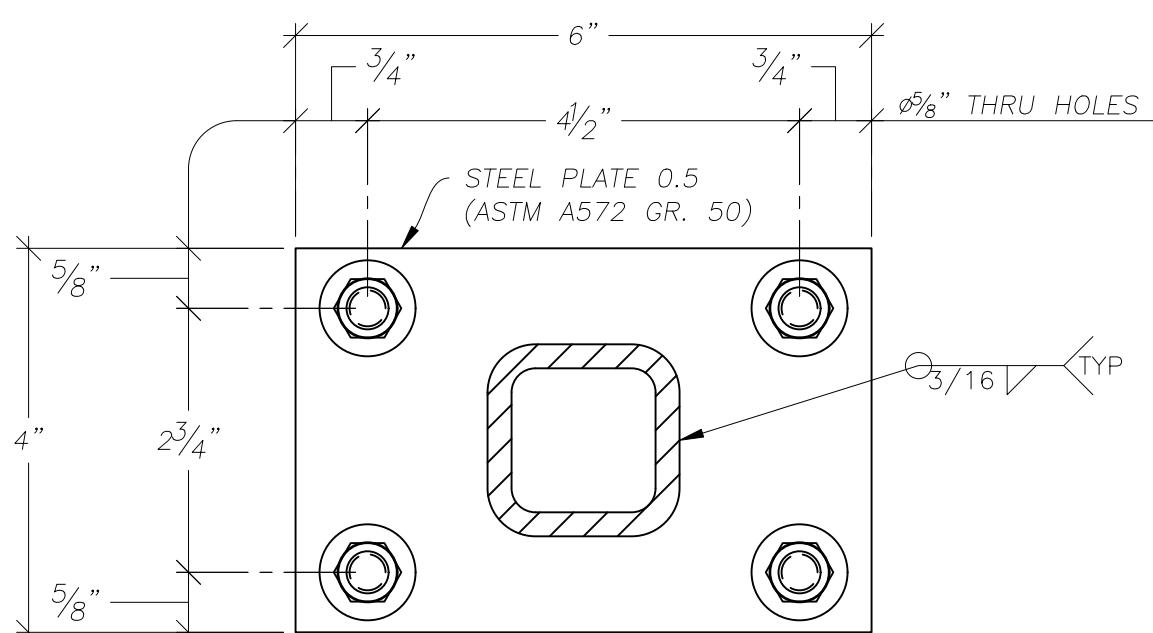
$$A_f = BL$$


$$b_0 = \frac{AP}{d}, b_1 = (0.5c_1 + 0.5b_1 + d), b_2 = (0.5c_2 + 0.5b_2 + d)$$


Case	P _u	M _u	b ₁	b ₂	b ₀	γ_v	β_c	y	A _f	A _p	R	J	V _u (psi)	ϕV_c
1	1.1	0.0	12.0	12.0	0.3	0.4	1.0	2.0	9.0	2.8	0.1	0.5	2.5	150.0
2	1.1	1.5	12.0	12.0	0.3	0.4	1.0	2.0	9.0	2.8	0.1	0.5	2.5	150.0
3	0.8	1.5	12.0	12.0	0.3	0.4	1.0	2.0	9.0	2.8	0.1	0.5	1.9	150.0

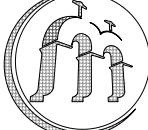

[Satisfactory]

where $\phi = 0.75$, (ACI 318 21.2)


NOTE: PEDESTAL/PLINTH TO BE FORMED W/ BOARD FORM OR BOARD FORM LINER. PATTERN T.B.D.

<p>MISSION STRUCTURE ENGINEERING</p> <p>779 N. KATHLEEN LN. UNIT A ORANGE, CA 92867 INFO@MISSIONSTRUCTURE.COM 510.593.5022</p>	ISSUED FOR 1st Submission	REV DATE 0 1/15/26	SEALS AND SIGNATURES 	CLIENT INFORMATION SHANNON LEIGH STRATEGIC PLACEMAKING 1455 Hays Street San Leandro, CA 94577 510.969.7870 info@shannonleigh.net	PROJECT INFORMATION Las Positas College 3000 Campus Hill Drive Livermore, CA 94551	PROJECT NUMBER
					DRAWING TITLE EWF.11 Elevation	
					DRAWING NUMBER SGN6.1	

MISSION STRUCTURE ENGINEERING	ISSUED FOR 1st Submission	REV DATE 0 1/15/26	SEALS AND SIGNATURES MICHAEL CLARK BENNETT LICENSED PROFESSIONAL ENGINEER C 90708 STATE OF CALIFORNIA	CLIENT INFORMATION SHANNON LEIGH STRATEGIC PLACEMAKING 1455 Hays Street San Leandro, CA 94577 510.969.7870 info@shannonleigh.net	PROJECT INFORMATION Las Positas College 3000 Campus Hill Drive Livermore, CA 94551	PROJECT NUMBER
779 N. KATHLEEN LN. UNIT A ORANGE, CA 92867 INFO@MISSIONSTRUCTURE.COM 510.593.5022						DRAWING TITLE EWF.11 Section
						DRAWING NUMBER SGN6.2


NOTE: MAY USE TRIANGULAR
STIFFENER/GUSSET FOR
IMPROVED FIT UP

A

BASEPLATE TYPE 2

SCALE: 6"=1'

NOTE: APPLY HEAVY EPOXY
PRIMER TO ALL SURFACES OF
BASEPLATES

	ISSUED FOR 1st Submission	REV DATE 0 1/15/26

MISSION
STRUCTURE
ENGINEERING
779 N. KATHLEEN LN. UNIT A
ORANGE, CA 92867
INFO@MISSIONSTRUCTURE.COM
510.593.5022

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

PROJECT INFORMATION
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

PROJECT NUMBER	
DRAWING TITLE	EWF.11 Details
DRAWING NUMBER	SGN6.3

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-24	1 / 5
Section	Freestanding EWF.11			Job No.

Freestanding Monument Sign

Project Location:
3000 Campus Hill Drive
Livermore, CA 94551

for

Shannon-Leigh Associates, LLC
1455 Hays Street
San Leandro, CA 94577

Scope of design:

Design of freestanding monument sign anchorage & foundation. Design includes load analysis, base plate/anchor bolt design & footing design. Design Criteria based on geotechnical report by Ninyo & Moore dated November 22, 2023.

Current Codes Which Shall Apply (As applicable to project):

CBC 2025, ASCE 7-22, AISC 360-22, ACI 318-19, AA ADM1 2020,

Dead Load

Total Sign Weight:
Alum. Cabinet Weight:

$$\begin{aligned} DL &= \text{Total Weight} = 124.25 \text{ lbf} \\ DL_{\text{cab}} &= \text{Weight.F14} = 69.25 \text{ lbf} \end{aligned}$$

Seismic Load (Full Sign Mass)

Seismic Loads

Seismic Loads of Non-Building Structures

ASCE 7-16 Chapter 15

Seismic Base Shear:

$$\begin{aligned} V_B &= C_s * W_p \\ R &= 3 \\ SDS &= 1.36 \\ I &= 1.25 \\ W_p &= 124.25 \text{ lbf} \end{aligned}$$

Seismic Response Coefficient:

$$C_s = \frac{SDS}{R} = 0.567$$

Seismic Base Shear:

$$V_B = C_s * W_p = 70.408 \text{ lbf}$$

Overstrength Factor, Ω (where applicable): OS = 1.75

Load Distribution

Per ASCE Chapter 29

Top of Sign Height:

$$h = s = 6 \text{ ft}$$

Cabinet Height:

$$h_c = \text{Weight.C2} = 5.5 \text{ ft}$$

Pedestal Height:

$$h_p = 0.5 \text{ ft}$$

Sign Height:

$$s = h_c + h_p = 6 \text{ ft}$$

Sign Width (Breadth):

$$B = \text{Weight.E2} = 2 \text{ ft}$$

Number of Posts:

$$n_p = 1$$

Gross Sign Area:

$$A_g = s * B = 12 \text{ ft}^2$$

Tributary Area (single post):

$$A_n = A_g = 12 \text{ ft}^2$$

Moment Arm (@ baseplate):

$$\text{arm}_1 = 1.05 * \left(\frac{h_c}{2} \right) = 2.888 \text{ ft}$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-24	2 / 5
Section	Freestanding EWF.11			Job No.

Moment Arm (@ top of ftg.):

$$arm_T = 1.05 * \left(\frac{s}{2} \right) + 0.5 \text{ ft} = 3.65 \text{ ft}$$

Wind Pressure:

$$p_w = 25 \text{ psf}$$

Wind Load Section 1:

$$W_{11} = p_w * A_n = 300 \text{ lbf}$$

Wind Moment Section 1:

$$M_{w1} = W_{11} * arm_1 = 866.3 \text{ lbf * ft}$$

(Wind controls acting on sign face)

Wind Torsion:

$$T_w = 0.2 * B * W_{11} = 120 \text{ ft * lbf}$$

Seismic Load on Section 1 (alum. cab.):

$$EQ_{s1} = EQ2.C_s * DL = 70.408 \text{ lbf}$$

Seismic Load Section 1 w/ Over strength:

$$EQ_{s1os} = EQ_{s1} * EQ2.OS = 123.215 \text{ lbf}$$

EQ Lateral Shear Force @ baseplate:

$$V_{1eq} = EQ_{s1} = 70.408 \text{ lbf}$$

EQ Lateral Force Moment:

$$M_{1eq} = V_{1eq} * arm_1 = 203.304 \text{ lbf * ft}$$

EQ Lateral Force w/ OS:

$$V_{1eqos} = EQ_{s1os} = 123.215 \text{ lbf}$$

EQ Lateral Force Moment w/OS:

$$M_{1eqos} = V_{1eqos} * arm_1 = 355.782 \text{ lbf * ft}$$

LRFD Load Combinations (as applicable-anchorage)

LC: 0.9 DL + 1.0 W

Dead Load:

$$DL_{min} = \frac{0.9 * (DL_{cab})}{n_p} = 62.325 \text{ lbf}$$

Shear Wind:

$$V_{1w1} = W_{11} = 300 \text{ lbf}$$

Moment Wind:

$$M_{1w1} = V_{1w1} * arm_1 = 866.25 \text{ lbf * ft}$$

LC: 1.2 DL + 1.0 W

Dead Load:

$$DL_{max} = \frac{1.2 * (DL_{cab})}{n_p} = 83.1 \text{ lbf}$$

Shear Wind:

$$V_{1w2} = W_{11} = 300 \text{ lbf}$$

Moment Wind:

$$M_{1w2} = V_{1w2} * arm_1 = 866.25 \text{ lbf * ft}$$

LC: 0.9 DL - 1.0 E_v + E_{mh}

Dead Load:

$$DL_{eqmin} = \frac{0.9 * (DL_{cab})}{n_p} = 62.325 \text{ lbf}$$

Vertical Seismic:

$$E_{v1} = \frac{-0.2 * EQ2.SDS * (DL_{cab})}{n_p} = -18.836 \text{ lbf}$$

Shear EQ:

$$V_{1eq1} = \frac{EQ_{s1os}}{n_p} = 123.215 \text{ lbf}$$

Moment EQ:

$$M_{1eq1} = \left(\frac{EQ_{s1os}}{n_p} \right) * arm_1 = 355.782 \text{ lbf * ft}$$

LC: 1.2 DL + 1.0 E_v + E_{mh}

Dead Load:

$$DL_{1eqmax} = \frac{1.2 * (DL_{cab})}{n_p} = 83.1 \text{ lbf}$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-24	3 / 5
Section	Freestanding EWF.11			Job No.

Vertical Seismic:

$$E_{v2} = \frac{0.2 * EQ2.SDS * (DL_{cab})}{n_p} = 18.836 \text{ lbf}$$

Shear EQ:

$$V_{eq2} = \frac{EQ_{s1os}}{n_p} = 123.215 \text{ lbf}$$

Moment EQ:

$$M_{eq2} = \frac{EQ_{s1os} * arm_1}{n_p} = 355.782 \text{ lbf * ft}$$

ASD Load Combinations

(Note: Omit axial loads on post-no restoring moment weld design)

LC: DL + 0.6 W

LC: DL + 0.7 (E_v + E_{mh})

Convert to ASD/service level loads

Vertical Load, ASD:

$$DL_{S1} = DL = 124.25 \text{ lbf}$$

Wind Pressure, ASD:

$$p_{wasd} = p_w * 0.6 = 15 \text{ psf}$$

Wind Load, ASD:

$$W_{asd} = p_{wasd} * A_n = 180 \text{ lbf}$$

Wind Force Moment, ASD:

$$M_{wasd} = arm_1 * W_{asd} = 519.75 \text{ ft * lbf}$$

Wind Torsion, ASD:

$$T_{asd} = T_w * 0.6 = 72 \text{ ft * lbf}$$

Max. Vertical Load, ASD:

$$DL_{eqasd} = \frac{DL_{S1} + 0.7 * 0.2 * EQ2.SDS * DL_{S1}}{n_p} = 147.907 \text{ lbf}$$

Seismic Load, ASD:

$$EQ_{asd} = \frac{EQ2.V_B * 0.7}{n_p} = 49.286 \text{ lbf}$$

Seismic Load w/ OS, ASD:

$$EQ_{osasd} = EQ_{asd} * EQ2.OS = 86.250 \text{ lbf}$$

Seismic Force Moment, ASD:

$$M_{eqasd} = arm_1 * EQ_{asd} = 142.313 \text{ ft * lbf}$$

Seismic Force Moment w/ OS, ASD:

$$M_{eqasd} = EQ_{osasd} * arm_1 = 249.047 \text{ lbf * ft}$$

Weld Connection From Post to Base Plate

Tube Depth:

$$d_{tube} = 2 \text{ in}$$

Tube Breadth:

$$b_{tube} = 2 \text{ in}$$

Tube Wall Thickness:

$$t_{tube} = 0.188 \text{ in}$$

Weld Line Section Modulus:

$$S_w = d_{tube} * b_{tube} + \frac{d_{tube}^2}{3} = 5.333 \text{ in}^2$$

Weld Line Area:

$$A_w = d_{tube} * 2 + b_{tube} * 2 = 8 \text{ in}$$

Fillet Weld Design (AISC 360 Section J2.4 or ADM J.2)

Weld to resist loads V & M.

Material = "Steel"

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-24	4 / 5
Section	Freestanding EWF.11			Job No.

Weld Group Configuration:

Type = "sq 2x2x0.188"

Input Weld Shear Load:

$$V = W_{\text{lasd}} = 180 \text{ lbf}$$

Input Weld Moment Load:

$$M = M_{\text{wasd}} = 519.75 \text{ ft * lbf}$$

Weld Line Section Modulus (bending):

$$S_w = \text{Report1.}S_w = 5.333 \text{ in}^2$$

Weld Line Section Modulus (shear):

$$A_w = \text{Report1.}A_w = 8 \text{ in}$$

Required Strength:

$$R = \sqrt{\left(\frac{V}{A_w}\right)^2 + \left(\frac{M}{S_w}\right)^2} = 1169.7 \frac{\text{lb}}{\text{in}}$$

Weld Electrode Tensile Strength:

$$f_u = 70 \text{ ksi}$$

Weld Factor of Safety:

$$\Omega_w = 2$$

Strength of Weld per inch:

$$R_n = \begin{cases} \frac{0.707 * f_u * 0.6 * \left(\frac{1 \text{ in}}{16}\right)}{\Omega_w} & \text{if Material == "Steel"} \\ \frac{0.707 * 0.85 * f_u * 0.6 * \left(\frac{1 \text{ in}}{16}\right)}{\Omega_w} & \text{otherwise} \end{cases} = 927.9 \frac{\text{lb}}{\text{in}}$$

Required Size of Weld:

$$a_{\text{req}} = \text{RoundUp}\left(\frac{R}{R_n}\right) = 2/16" \text{ Weld Leg Size}$$

Foundation Loads

Spread Footing Foundation

Nominal loads for allowable capacities per geotechnical report. Seismic Loads to have omega/overstrength applied (cantilever foundation system). Design provided in design worksheet to follow.

Width of Footing:

$$W_{\text{ftg}} = 3 \text{ ft}$$

Length of Footing:

$$l_{\text{ftg}} = 3 \text{ ft}$$

Width of Pedestal:

$$W_{\text{ped}} = 2 \text{ ft}$$

Length of Pedestal:

$$l_{\text{ped}} = 3 \text{ ft}$$

Height of Pedestal:

$$H_{\text{ped}} = 12 \text{ in}$$

Weight of Concrete Pedestal:

$$W_{\text{ped}} = W_{\text{ped}} * l_{\text{ped}} * H_{\text{ped}} * 150 \text{ pcf} = 900 \text{ lbf}$$

LC: 0.9 DL + W

(nominal values for foundation software shown below)

Vertical Force:

$$A_1 = 0.9 * (\text{DL} + W_{\text{ped}}) = 921.825 \text{ lbf}$$

Horizontal Force:

$$P_1 = (B * s * p_w) = 300 \text{ lbf}$$

Moment:

$$M_1 = P_1 * \text{arm}_T = 1095 \text{ lbf * ft}$$

LC: 0.9 DL + (E_v + E_mh)

(nominal values for foundation software shown below)

DL Vertical Force:

$$A_2 = 0.9 * (\text{DL} + W_{\text{ped}}) = 921.825 \text{ lbf}$$

EQ Vertical Force:

$$A_3 = (-0.2 * \text{EQ2.SDS} * (\text{DL} + W_{\text{ped}})) = -278.596 \text{ lbf}$$

Horizontal Forces:

$$P_2 = \text{EQ2.V}_B * \text{EQ2.OS} = 123.215 \text{ lbf}$$

Sign Cabinet:

**MISSION
STRUCTURE**
ENGINEERING

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-24	5 / 5
Section	Freestanding EWF.11			Job No.

Sign Cabinet moment arm:

$$a_2 = \text{arm}_T = 3.65 \text{ ft}$$

Sign Cabinet moment:

$$M_2 = P_2 * a_2 = 449.733 \text{ lbf * ft}$$

Combined EQ Axial:

$$A_{\text{eq}} = A_2 + A_3 = 643.229 \text{ lbf}$$

Combined EQ Shear:

$$V_{\text{eq}} = P_2 = 123.215 \text{ lbf}$$

Combined EQ Moment:

$$M_{\text{eq}} = M_2 = 449.733 \text{ lbf * ft}$$

Weight Takeoff

Component	Height:	5.5 ft		Width:	2 ft	
	Unit Wt	Unit Qty	Wt	Qty	Weight	
Skin	2 psf	11 ft ²	22 lbf	2	44 lbf	
Post	10 plf	5.5 ft	55 lbf	1	55 lbf	
Channel Extrusion	1.5 plf	15 ft	22.5 lbf	1	22.5 lbf	
Misc Framing/Stiffeners	0.25 psf	11 ft ²	2.75 lbf	1	2.75 lbf	

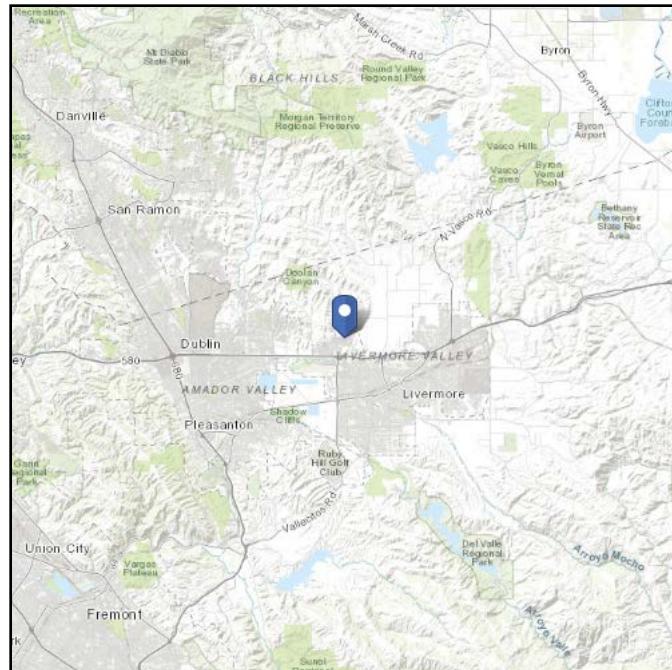
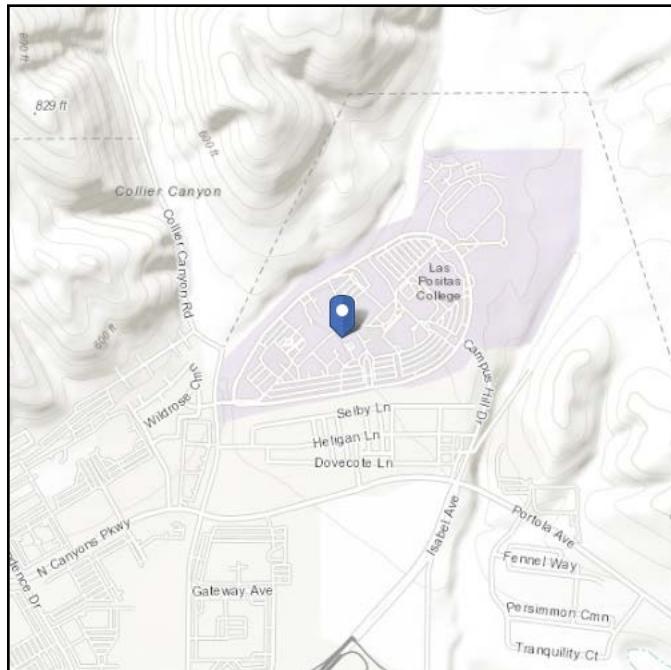
Cabinet Wt.: 69.25 lbf

Total: 124.3 lbf

ASCE Hazards Report

Address:

Las Positas College - 3000
Campus Hill Drive
Livermore,



Standard: ASCE/SEI 7-22

Risk Category: III

Soil Class: D - Stiff Soil

Latitude: 37.710873

Longitude: -121.80058

Elevation: 480.38484203241944 ft
(NAVD 88)

Wind

Results:

Wind Speed	99 Vmph
10-year MRI	64 Vmph
25-year MRI	70 Vmph
50-year MRI	75 Vmph
100-year MRI	79 Vmph
300-year MRI	87 Vmph
700-year MRI	93 Vmph
1,700-year MRI	99 Vmph
3,000-year MRI	103 Vmph
10,000-year MRI	113 Vmph
100,000-year MRI	129 Vmph
1,000,000-year MRI	147 Vmph

Data Source:

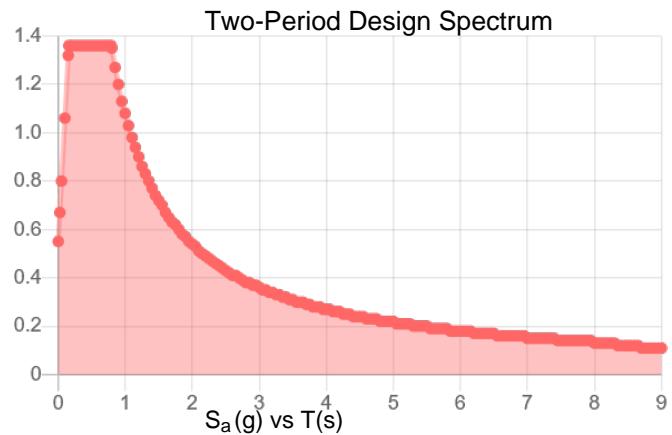
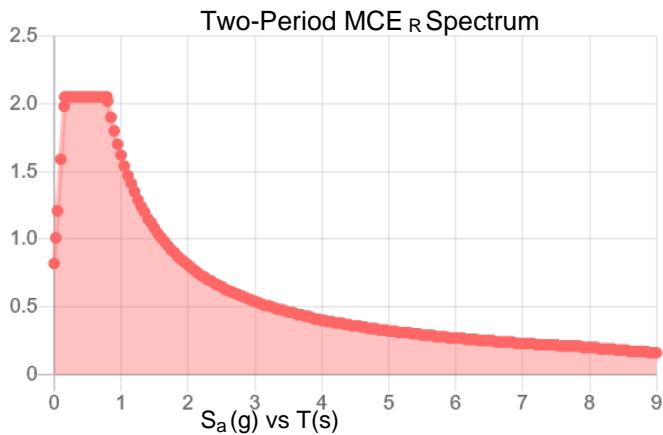
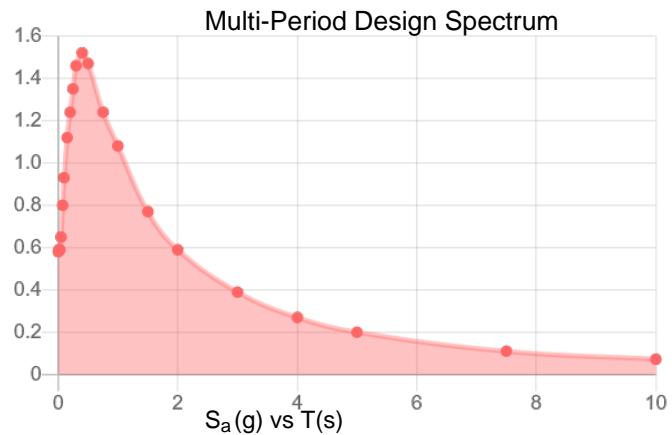
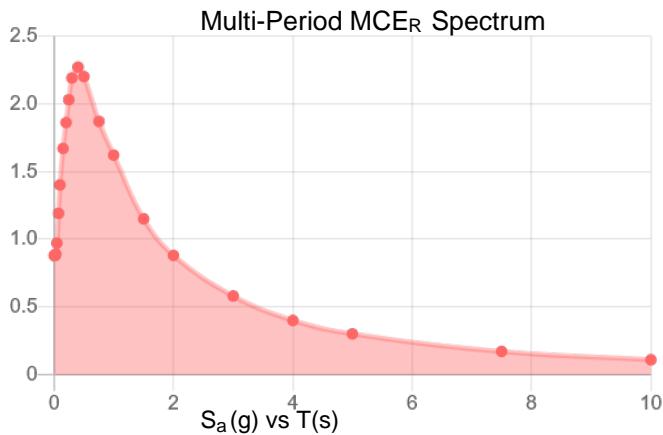
ASCE/SEI 7-22, Fig. 26.5-1C and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed:

Mon Nov 24 2025

AMERICAN SOCIETY OF CIVIL ENGINEERS

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-22 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years). Values for 10-year MRI, 25-year MRI, 50-year MRI and 100-year MRI are Service Level wind speeds, all other wind speeds are Ultimate wind speeds.





Site is not in a hurricane-prone region as defined in ASCE/SEI 7-22 Section 26.2.

Site Soil Class: D - Stiff Soil

Results:

PGA _M :	0.73	T _L :	8
S _{MS} :	2.05	S _S :	2.13
S _{M1} :	1.62	S ₁ :	0.81
S _{DS} :	1.36	V _{S30} :	260
S _{D1} :	1.08		

Seismic Design Category: E

MCE_R Vertical Response Spectrum
Vertical ground motion data has not yet been made available by USGS.

Design Vertical Response Spectrum
Vertical ground motion data has not yet been made available by USGS.

Data Accessed: **Mon Nov 24 2025**

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-22 and ASCE/SEI 7-22 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-22 Ch. 21 are available from USGS.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

Wind Analysis for Freestanding Wall & Sign Based on ASCE 7-22

Monument Sign Wind Pressure

INPUT DATA

Exposure category (B, C or D)	=	C
Importance factor, 1.0 only, (Table 1.5-2)	I _w =	1.00
Basic wind speed (ASCE 7 26.5.1)	V =	99 mph, (159.32 kph)
Topographic factor (26.8 & Table 26.8-1)	K _{zt} =	1 Flat
Height of top	h =	11 ft, (3.35 m)
Vertical dimension (for wall, s = h)	s =	11 ft, (3.35 m)
Horizontal dimension	B =	4 ft, (1.22 m)
Dimension of return corner	L _r =	0 ft, (0.00 m)

DESIGN SUMMARY

Max horizontal wind pressure	p =	25 psf, (1177 N/m ²)
Max total horizontal force at centroid of base	F =	1.08 kips, (5 kN)
Max bending moment at centroid of base	M =	6.54 ft-kips, (9 kN-m)
Max torsion at centroid of base	T =	0.87 ft-kips, (1 kN-m)

ANALYSIS

Velocity pressure

$$q_h K_d = (0.00256 K_z K_{zt} K_e V^2) K_d = 18.13 \text{ psf}$$

where: q_h = velocity pressure at mean roof height, h . (Eq. 26.10-1 page 277), $K_e = 1.00$, (Tab. 26.9-1 page 275)

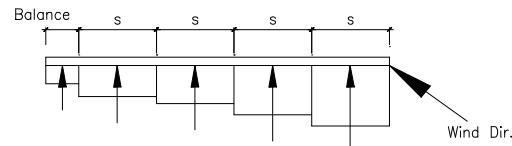
K_z = velocity pressure exposure coefficient evaluated at height, h , (Tab. 26.10-1, pg 277) = 0.85

K_d = wind directionality factor. (Tab. 26.6-1, page 274) = 0.85

h = height of top = 11.00 ft

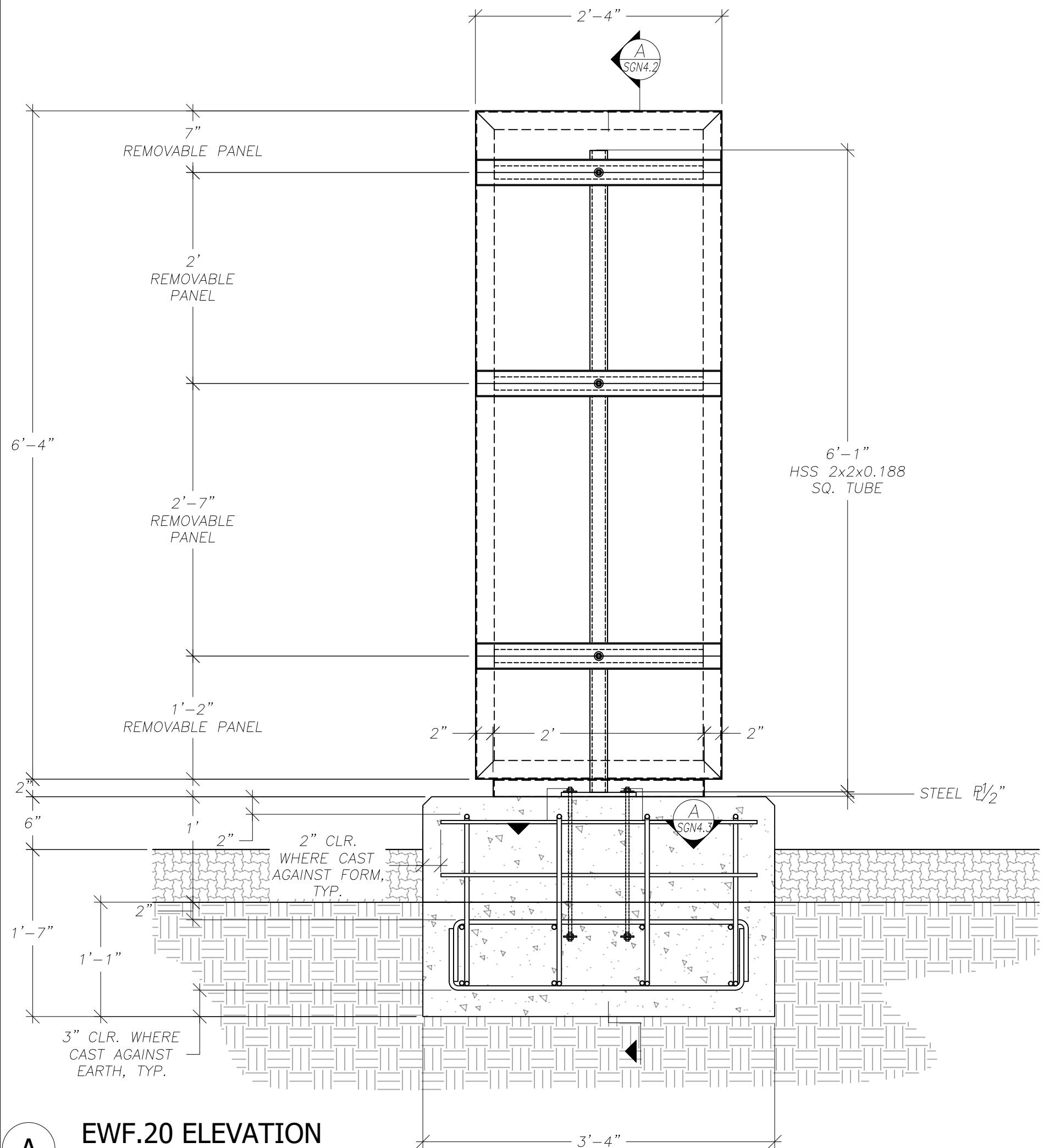
Wind Force Case A: resultant force through the geometric center (Sec. 29.3.1)

p = $q_h K_d G C_N$	=	25 psf
F = p A _s	=	1.08 kips
M = F (h - 0.5s) for sign, F (0.55h) for wall	=	6.54 ft-kips
T =	=	0.00 ft-kips
where: G = gust effect factor. (Sec. 26.9)	=	0.85
C _f = net force coefficient. (Fig. 29.3-1, page 301)	=	1.60
A _s = B s	=	44.0 ft ²


Wind Force Case B: resultant force at 0.2 B offset of the geometric center (Sec. 29.3.1)

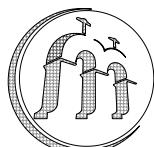
p = Case A	=	25 psf
F = Case A	=	1.08 kips
M = Case A	=	6.54 ft-kips
T = 0.2 F B	=	0.87 ft-kips

Wind Force Case C: resultant force different at each region (Sec. 29.4.1)


p = $q_h G C_f$		
F = $\sum p A_s$		
M = $\sum [F (h - 0.5s) \text{ for sign, } F (0.55h) \text{ for wall}]$		
T = $\sum T_s$		

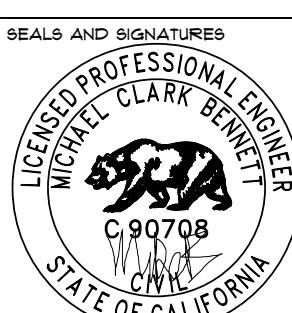
Distance	C _f	P _i	A _{si}	F _i	M _i	T _i
(ft)	(Fig. 29.3-1)	(psf)	(ft ²)	(kips)	(ft-kips)	(ft-kips)
4.0	1.800	28	44	1.22	7.38	0.00
Σ						
4.0	1.200	18	0	0.00	0.00	0.00
Σ				1.22	7.38	0.00

<== Case C may not be considered, footnote 3 of Fig. 6-20


NOTE: PEDESTAL/PLINTH TO BE FORMED W/ BOARD FORM OR BOARD FORM LINER. PATTERN T.B.D.

A

EWF.20 ELEVATION


SCALE 1" = 1"

MISSION STRUCTURE

779 N. KATHLEEN LN. UNIT A
ORANGE, CA 92867
INFO@MISSIONSTRUCTURE.COM

ISSUED FOR REV DATE
1st Submission 0 1/15/26

CLIENT INFORMATION

SHANNON LEIGH

STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

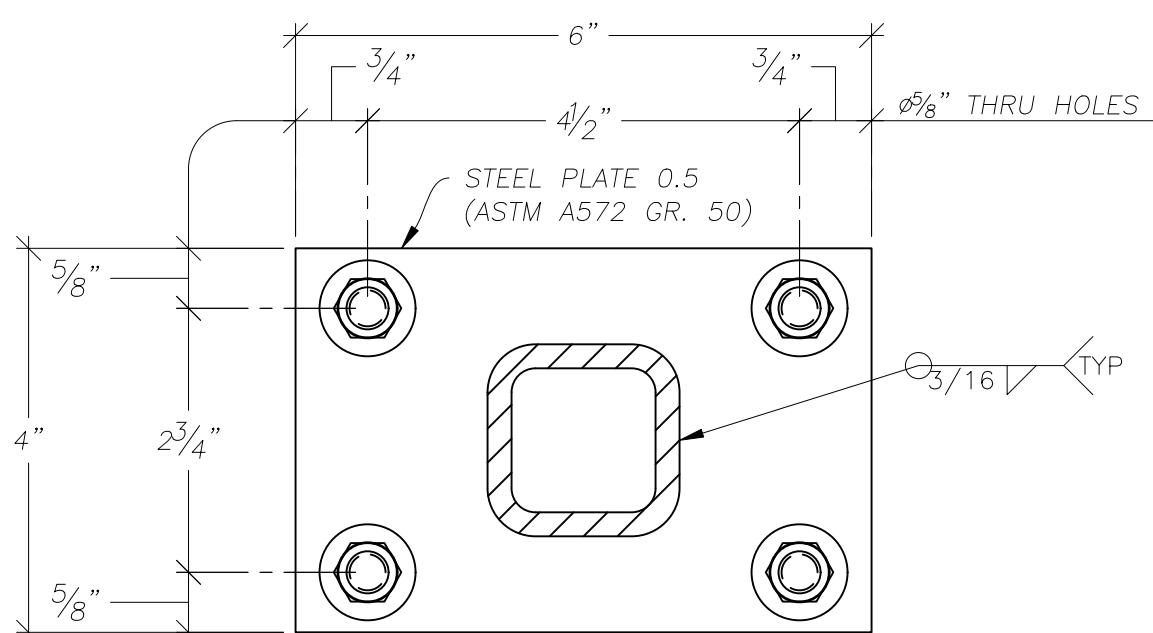
PROJECT INFORMATION
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551


PROJECT NUMBER

DRAWING TITLE

EWF.20

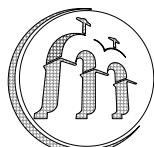
Electrical


DRAWING NUMBER
SGN4 1

A EWF.20 SECTION

SCALE: 1"=1'

MISSION STRUCTURE ENGINEERING	ISSUED FOR 1st Submission	REV DATE 0 1/15/26	SEALS AND SIGNATURES 	CLIENT INFORMATION SHANNON LEIGH STRATEGIC PLACEMAKING 1455 Hays Street San Leandro, CA 94577 510.969.7870 info@shannonleigh.net	PROJECT INFORMATION Las Positas College 3000 Campus Hill Drive Livermore, CA 94551	PROJECT NUMBER
						DRAWING TITLE EWF.20 Section
						DRAWING NUMBER SGN4.2



NOTE: MAY USE TRIANGULAR
STIFFENER/GUSSET FOR
IMPROVED FIT UP

A **BASEPLATE TYPE 2**

SCALE: 6"=1'

NOTE: APPLY HEAVY EPOXY
PRIMER TO ALL SURFACES OF
BASEPLATES

**MISSION
STRUCTURE
ENGINEERING**
779 N. KATHLEEN LN. UNIT A
ORANGE, CA 92867
INFO@MISSIONSTRUCTURE.COM
510.593.5022

ISSUED FOR 1st Submission REV 0 DATE 1/15/26

SEALS AND SIGNATURES

SHANNON LEIGH
STRATEGIC PLACEMAKING

1455 Hays Street San Leandro, CA 94577
510.969.7870 info@shannonleigh.net

PROJECT INFORMATION
Las Positas College
3000 Campus Hill Drive
Livermore, CA 94551

PROJECT NUMBER
EWF.20
DRAWING TITLE
Details
DRAWING NUMBER
SGN4.3

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	1 / 5
Section	Freestanding EWF.20			Job No.

Freestanding Monument Sign

Project Location:
3000 Campus Hill Drive
Livermore, CA 94551

for

Shannon-Leigh Associates, LLC
1455 Hays Street
San Leandro, CA 94577

Scope of design:

Design of freestanding monument sign anchorage & foundation. Design includes load analysis, base plate/anchor bolt design & footing design. Design Criteria based on geotechnical report by Ninyo & Moore dated November 22, 2023.

Current Codes Which Shall Apply (As applicable to project):

CBC 2025, ASCE 7-22, AISC 360-22, ACI 318-19, AA ADM1 2020,

Dead Load

Total Sign Weight:

$$DL = \text{Total Weight} = 155.856 \text{ lbf}$$

Alum. Cabinet Weight:

$$DL_{\text{cab}} = \text{Weight.F14} = 90.856 \text{ lbf}$$

Seismic Load (Full Sign Mass)

Seismic Loads

Seismic Loads of Non-Building Structures

ASCE 7-16 Chapter 15

Seismic Base Shear:

$$V_B = C_s * W_p$$

$$R = 3$$

$$SDS = 1.36$$

$$I = 1.25$$

$$W_p = 155.856 \text{ lbf}$$

Seismic Response Coefficient:

$$C_s = \frac{SDS}{R} = 0.567$$

Seismic Base Shear:

$$V_B = C_s * W_p = 88.319 \text{ lbf}$$

Overstrength Factor, Ω (where applicable): OS = 1.75

Load Distribution

Per ASCE Chapter 29

Top of Sign Height:

$$h = s = 7 \text{ ft}$$

Cabinet Height:

$$h_c = \text{Weight.C2} = 6.5 \text{ ft}$$

Pedestal Height:

$$h_p = 0.5 \text{ ft}$$

Sign Height:

$$s = h_c + h_p = 7 \text{ ft}$$

Sign Width (Breadth):

$$B = \text{Weight.E2} = 2.33 \text{ ft}$$

Number of Posts:

$$n_p = 1$$

Gross Sign Area:

$$A_g = s * B = 16.31 \text{ ft}^2$$

Tributary Area (single post):

$$A_n = A_g = 16.31 \text{ ft}^2$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	2 / 5
Section	Freestanding EWF.20			Job No.

Moment Arm (@ baseplate):

$$arm_1 = 1.05 * \left(\frac{h_c}{2} \right) = 3.413 \text{ ft}$$

Moment Arm (@ top of ftg.):

$$arm_T = 1.05 * \left(\frac{s}{2} \right) + 0.5 \text{ ft} = 4.175 \text{ ft}$$

Wind Pressure:

Wind Load Section 1:

Wind Moment Section 1:

Wind Torsion:

Seismic Load on Section 1 (alum. cab.):

Seismic Load Section 1 w/ Over strength:

EQ Lateral Shear Force @ baseplate:

EQ Lateral Force Moment:

EQ Lateral Force w/ OS:

EQ Lateral Force Moment w/OS:

$$EQ_{s1} = EQ2.C_s * DL = 88.319 \text{ lbf}$$

$$EQ_{s1os} = EQ_{s1} * EQ2.OS = 154.557 \text{ lbf}$$

$$V_{1eq} = EQ_{s1} = 88.319 \text{ lbf}$$

$$M_{1eq} = V_{1eq} * arm_1 = 301.387 \text{ lbf * ft}$$

$$V_{1eqos} = EQ_{s1os} = 154.557 \text{ lbf}$$

$$M_{1eqos} = V_{1eqos} * arm_1 = 527.427 \text{ lbf * ft}$$

LRFD Load Combinations (as applicable-anchorage)

LC: 0.9 DL + 1.0 W

Dead Load:

$$DL_{min} = \frac{0.9 * (DL_{cab})}{n_p} = 81.771 \text{ lbf}$$

Shear Wind:

Moment Wind:

$$V_{1w1} = W_{11} = 407.75 \text{ lbf}$$

$$M_{1w1} = V_{1w1} * arm_1 = 1391.447 \text{ lbf * ft}$$

LC: 1.2 DL + 1.0 W

Dead Load:

$$DL_{max} = \frac{1.2 * (DL_{cab})}{n_p} = 109.027 \text{ lbf}$$

Shear Wind:

Moment Wind:

$$V_{1w2} = W_{11} = 407.75 \text{ lbf}$$

$$M_{1w2} = V_{1w2} * arm_1 = 1391.447 \text{ lbf * ft}$$

LC: 0.9 DL - 1.0 E_v + E_{mh}

Dead Load:

$$DL_{eqmin} = \frac{0.9 * (DL_{cab})}{n_p} = 81.771 \text{ lbf}$$

Vertical Seismic:

$$E_{v1} = \frac{-0.2 * EQ2.SDS * (DL_{cab})}{n_p} = -24.713 \text{ lbf}$$

Shear EQ:

$$V_{1eq1} = \frac{EQ_{s1os}}{n_p} = 154.557 \text{ lbf}$$

Moment EQ:

$$M_{1eq1} = \left(\frac{EQ_{s1os}}{n_p} \right) * arm_1 = 527.427 \text{ lbf * ft}$$

LC: 1.2 DL + 1.0 E_v + E_{mh}

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	3 / 5
Section	Freestanding EWF.20			Job No.

Dead Load:

$$DL_{1eqmax} = \frac{1.2 * (DL_{cab})}{n_p} = 109.027 \text{ lbf}$$

Vertical Seismic:

$$E_{v2} = \frac{0.2 * EQ2.SDS * (DL_{cab})}{n_p} = 24.713 \text{ lbf}$$

Shear EQ:

$$V_{eq2} = \frac{EQ_{s1os}}{n_p} = 154.557 \text{ lbf}$$

Moment EQ:

$$M_{eq2} = \frac{EQ_{s1os} * arm_1}{n_p} = 527.427 \text{ lbf * ft}$$

ASD Load Combinations

(Note: Omit axial loads on post-no restoring moment weld design)

LC: DL + 0.6 W

LC: DL + 0.7 (E_v + E_{mh})

Convert to ASD/service level loads

Vertical Load, ASD:

$$DL_{S1} = DL = 155.856 \text{ lbf}$$

Wind Pressure, ASD:

$$p_{wasd} = p_w * 0.6 = 15 \text{ psf}$$

Wind Load, ASD:

$$W_{lasd} = p_{wasd} * A_n = 244.65 \text{ lbf}$$

Wind Force Moment, ASD:

$$M_{wasd} = arm_1 * W_{lasd} = 834.868 \text{ ft * lbf}$$

Wind Torsion, ASD:

$$T_{asd} = T_w * 0.6 = 114.007 \text{ ft * lbf}$$

Max. Vertical Load, ASD:

$$DL_{eqasd} = \frac{DL_{S1} + 0.7 * 0.2 * EQ2.SDS * DL_{S1}}{n_p} = 185.531 \text{ lbf}$$

Seismic Load, ASD:

$$EQ_{asd} = \frac{EQ2.V_B * 0.7}{n_p} = 61.823 \text{ lbf}$$

Seismic Load w/ OS, ASD:

$$EQ_{osasd} = EQ_{asd} * EQ2.OS = 108.190 \text{ lbf}$$

Seismic Force Moment, ASD:

$$M_{eqasd} = arm_1 * EQ_{asd} = 210.971 \text{ ft * lbf}$$

Seismic Force Moment w/ OS, ASD:

$$M_{eqasd} = EQ_{osasd} * arm_1 = 369.199 \text{ lbf * ft}$$

Weld Connection From Post to Base Plate

Tube Depth:

$$d_{tube} = 2 \text{ in}$$

Tube Breadth:

$$b_{tube} = 2 \text{ in}$$

Tube Wall Thickness:

$$t_{tube} = 0.188 \text{ in}$$

Weld Line Section Modulus:

$$S_w = d_{tube} * b_{tube} + \frac{d_{tube}^2}{3} = 5.333 \text{ in}^2$$

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	4 / 5
Section	Freestanding EWF.20			Job No.

Weld Line Area:

$$A_w = d_{tube} * 2 + b_{tube} * 2 = 8 \text{ in}$$

Fillet Weld Design (AISC 360 Section J2.4 or ADM J.2)

Weld to resist loads V & M.

Material = "Steel"

Weld Group Configuration:

Type = "sq 2x2x0.188"

Input Weld Shear Load:

$$V = W_{lasd} = 244.65 \text{ lbf}$$

Input Weld Moment Load:

$$M = M_{wasd} = 834.868 \text{ ft * lbf}$$

Weld Line Section Modulus (bending):

$$S_w = \text{Report1}.S_w = 5.333 \text{ in}^2$$

Weld Line Section Modulus (shear):

$$A_w = \text{Report1}.A_w = 8 \text{ in}$$

Required Strength:

$$R = \sqrt{\left(\frac{V}{A_w}\right)^2 + \left(\frac{M}{S_w}\right)^2} = 1878.7 \frac{\text{lb}}{\text{in}}$$

Weld Electrode Tensile Strength:

$$f_u = 70 \text{ ksi}$$

Weld Factor of Safety:

$$\Omega_w = 2$$

Strength of Weld per inch:

$$R_n = \begin{cases} \frac{0.707 * f_u * 0.6 * \left(\frac{1 \text{ in}}{16}\right)}{\Omega_w} & \text{if Material == "Steel"} \\ \frac{0.707 * 0.85 * f_u * 0.6 * \left(\frac{1 \text{ in}}{16}\right)}{\Omega_w} & \text{otherwise} \end{cases} = 927.9 \frac{\text{lb}}{\text{in}}$$

Required Size of Weld:

$$a_{req} = \text{RoundUp}\left(\frac{R}{R_n}\right) = 3/16" \text{ Weld Leg Size}$$

Foundation Loads

Spread Footing Foundation

Nominal loads for allowable capacities per geotechnical report. Seismic Loads to have omega/overstrength applied (cantilever foundation system). Design provided in design worksheet to follow.

Width of Footing:

$$W_{ftg} = 3.33 \text{ ft}$$

Length of Footing:

$$l_{ftg} = 3.33 \text{ ft}$$

Width of Pedestal:

$$W_{ped} = 2 \text{ ft}$$

Length of Pedestal:

$$l_{ped} = 3.33 \text{ ft}$$

Height of Pedestal:

$$H_{ped} = 12 \text{ in}$$

Weight of Concrete Pedestal:

$$W_{ped} = W_{ped} * l_{ped} * H_{ped} * 150 \text{ pcf} = 999 \text{ lbf}$$

LC: 0.9 DL + W

(nominal values for foundation software shown below)

Vertical Force:

$$A_1 = 0.9 * (DL + W_{ped}) = 1039.371 \text{ lbf}$$

Horizontal Force:

$$P_1 = (B * s * p_w) = 407.75 \text{ lbf}$$

Moment:

$$M_1 = P_1 * \text{arm}_T = 1702.356 \text{ lbf * ft}$$

**MISSION
STRUCTURE**
ENGINEERING

Project	Las Positas College	By	MB	Sheet No.
Location	Livermore, CA	Date	2025-11-25	5 / 5
Section	Freestanding EWF.20			Job No.

LC: $0.9 \text{ DL} + (E_v + E_{mh})$

(nominal values for foundation software shown below)

DL Vertical Force:

$$A_2 = 0.9 * (\text{DL} + \text{Wt}_{\text{ped}}) = 1039.371 \text{ lbf}$$

EQ Vertical Force:

$$A_3 = (-0.2 * \text{EQ2.SDS} * (\text{DL} + \text{Wt}_{\text{ped}})) = -314.121 \text{ lbf}$$

Horizontal Forces:

Sign Cabinet:

$$P_2 = \text{EQ2.V}_B * \text{EQ2.OS} = 154.557 \text{ lbf}$$

Sign Cabinet moment arm:

$$a_2 = \text{arm}_T = 4.175 \text{ ft}$$

Sign Cabinet moment:

$$M_2 = P_2 * a_2 = 645.277 \text{ lbf * ft}$$

Combined EQ Axial:

$$A_{\text{eq}} = A_2 + A_3 = 725.250 \text{ lbf}$$

Combined EQ Shear:

$$V_{\text{eq}} = P_2 = 154.557 \text{ lbf}$$

Combined EQ Moment:

$$M_{\text{eq}} = M_2 = 645.277 \text{ lbf * ft}$$

Weight Takeoff

Component	Height: 6.5 ft		Width: 2.33 ft		Weight
	Unit Wt	Unit Qty	Wt	Qty	
Skin	2 psf	15.1 ft ²	30.29 lbf	2	60.58 lbf
Post	10 plf	6.5 ft	65 lbf	1	65 lbf
Channel Extrusion	1.5 plf	17.66 ft	26.49 lbf	1	26.49 lbf
Misc Framing/Stiffeners	0.25 psf	15.1 ft ²	3.786 lbf	1	3.786 lbf

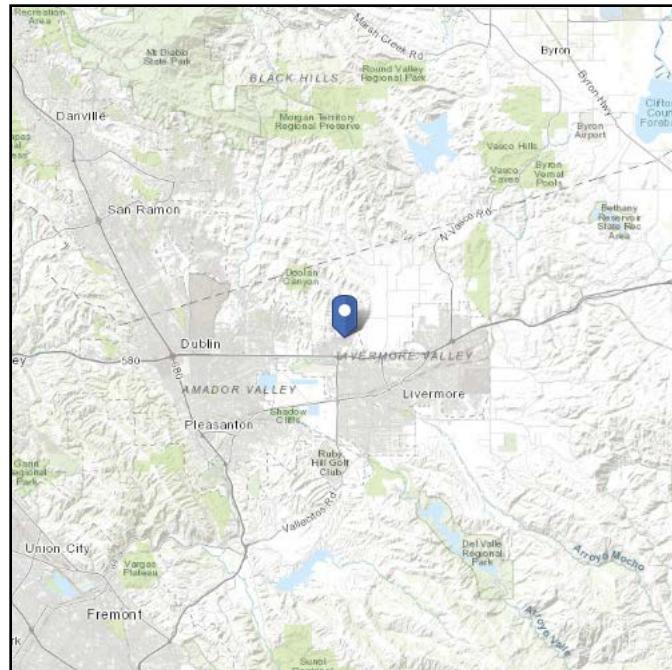
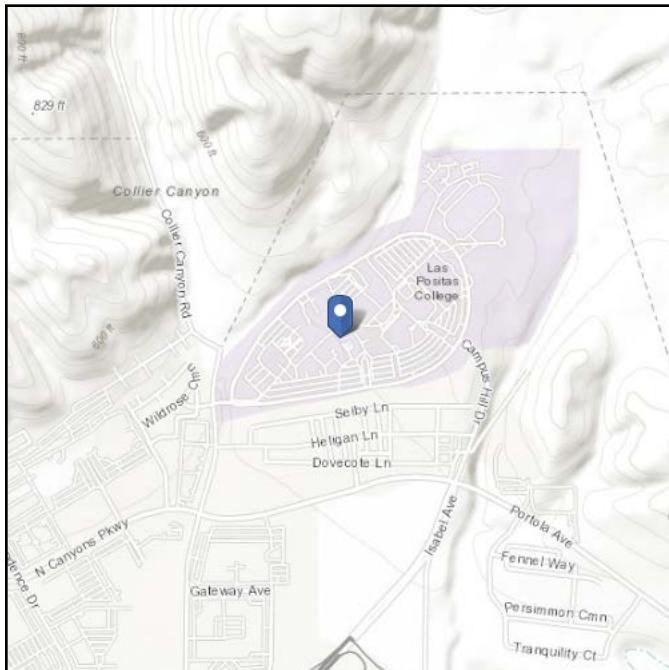
Cabinet Wt.: 90.86 lbf

Total: 155.9 lbf

ASCE Hazards Report

Address:

Las Positas College - 3000
Campus Hill Drive
Livermore,



Standard: ASCE/SEI 7-22

Risk Category: III

Soil Class: D - Stiff Soil

Latitude: 37.710873

Longitude: -121.80058

Elevation: 480.38484203241944 ft
(NAVD 88)

Wind

Results:

Wind Speed	99 Vmph
10-year MRI	64 Vmph
25-year MRI	70 Vmph
50-year MRI	75 Vmph
100-year MRI	79 Vmph
300-year MRI	87 Vmph
700-year MRI	93 Vmph
1,700-year MRI	99 Vmph
3,000-year MRI	103 Vmph
10,000-year MRI	113 Vmph
100,000-year MRI	129 Vmph
1,000,000-year MRI	147 Vmph

Data Source:

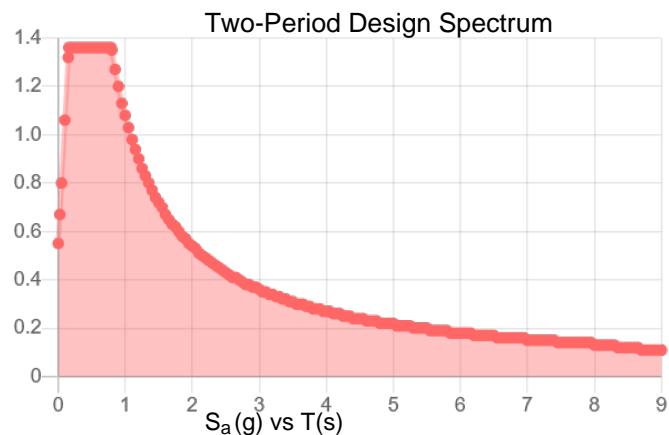
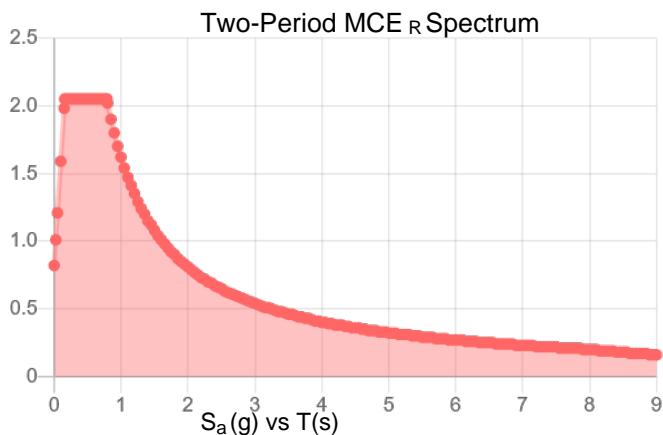
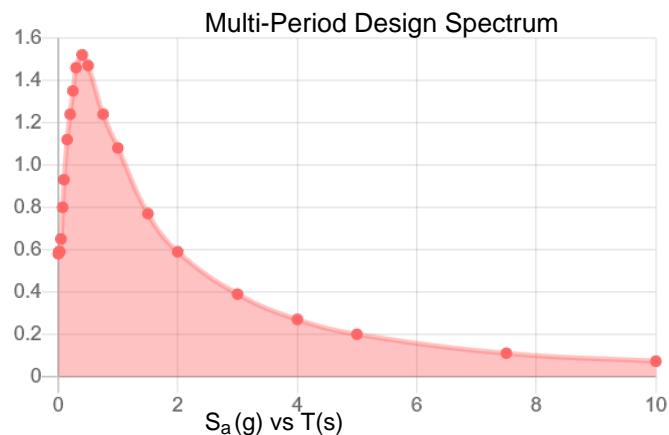
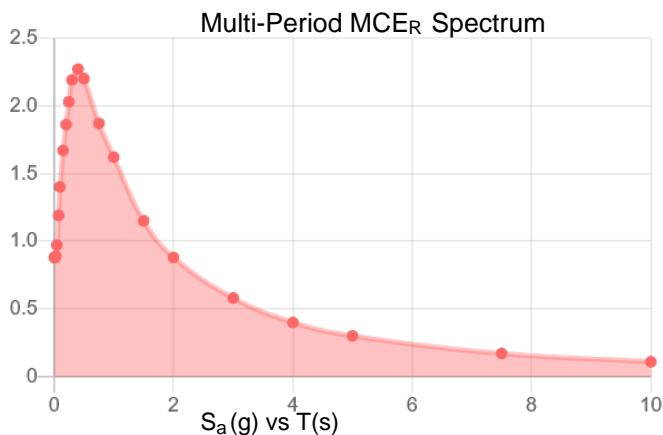
ASCE/SEI 7-22, Fig. 26.5-1C and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed:

Mon Nov 24 2025

AMERICAN SOCIETY OF CIVIL ENGINEERS

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-22 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years). Values for 10-year MRI, 25-year MRI, 50-year MRI and 100-year MRI are Service Level wind speeds, all other wind speeds are Ultimate wind speeds.





Site is not in a hurricane-prone region as defined in ASCE/SEI 7-22 Section 26.2.

Site Soil Class: D - Stiff Soil

Results:

PGA _M :	0.73	T _L :	8
S _{MS} :	2.05	S _S :	2.13
S _{M1} :	1.62	S ₁ :	0.81
S _{DS} :	1.36	V _{S30} :	260
S _{D1} :	1.08		

Seismic Design Category: E

MCE_R Vertical Response Spectrum
Vertical ground motion data has not yet been made available by USGS.

Design Vertical Response Spectrum
Vertical ground motion data has not yet been made available by USGS.

Data Accessed: **Mon Nov 24 2025**

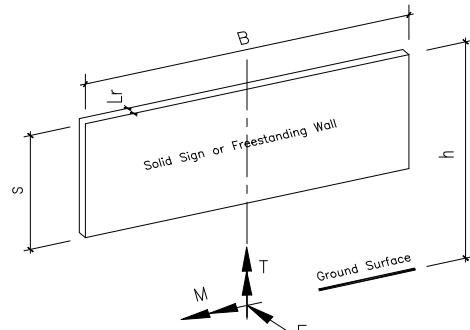
Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-22 and ASCE/SEI 7-22 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-22 Ch. 21 are available from USGS.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.



Wind Analysis for Freestanding Wall & Sign Based on ASCE 7-22

Monument Sign Wind Pressure

INPUT DATA

Exposure category (B, C or D)	=	C
Importance factor, 1.0 only, (Table 1.5-2)	I _w =	1.00
Basic wind speed (ASCE 7 26.5.1)	V =	99 mph, (159.32 kph)
Topographic factor (26.8 & Table 26.8-1)	K _{zt} =	1 Flat
Height of top	h =	11 ft, (3.35 m)
Vertical dimension (for wall, s = h)	s =	11 ft, (3.35 m)
Horizontal dimension	B =	4 ft, (1.22 m)
Dimension of return corner	L _r =	0 ft, (0.00 m)

DESIGN SUMMARY

Max horizontal wind pressure	p =	25 psf, (1177 N/m ²)
Max total horizontal force at centroid of base	F =	1.08 kips, (5 kN)
Max bending moment at centroid of base	M =	6.54 ft-kips, (9 kN-m)
Max torsion at centroid of base	T =	0.87 ft-kips, (1 kN-m)

ANALYSIS

Velocity pressure

$$q_h K_d = (0.00256 K_z K_{zt} K_e V^2) K_d = 18.13 \text{ psf}$$

where: q_h = velocity pressure at mean roof height, h . (Eq. 26.10-1 page 277), $K_e = 1.00$, (Tab. 26.9-1 page 275)

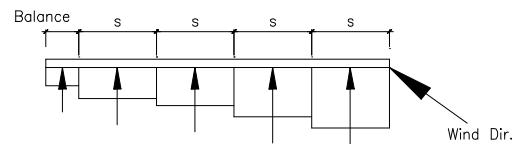
K_z = velocity pressure exposure coefficient evaluated at height, h , (Tab. 26.10-1, pg 277) = 0.85

K_d = wind directionality factor. (Tab. 26.6-1, page 274) = 0.85

h = height of top = 11.00 ft

Wind Force Case A: resultant force through the geometric center (Sec. 29.3.1)

$p = q_h K_d G C_N$	=	25 psf
$F = p A_s$	=	1.08 kips
$M = F (h - 0.5s)$ for sign, $F (0.55h)$ for wall	=	6.54 ft-kips
$T =$	=	0.00 ft-kips
where: G = gust effect factor. (Sec. 26.9)	=	0.85
C_f = net force coefficient. (Fig. 29.3-1, page 301)	=	1.60
$A_s = B s$	=	44.0 ft ²


Wind Force Case B: resultant force at 0.2 B offset of the geometric center (Sec. 29.3.1)

$p = \text{Case A}$	=	25 psf
$F = \text{Case A}$	=	1.08 kips
$M = \text{Case A}$	=	6.54 ft-kips
$T = 0.2 F B$	=	0.87 ft-kips

Wind Force Case C: resultant force different at each region (Sec. 29.4.1)

$p = q_h G C_f$		
$F = \sum p A_s$		
$M = \sum [F (h - 0.5s) \text{ for sign, } F (0.55h) \text{ for wall}]$		
$T = \sum T_s$		

Distance	C _f	P _i	A _{si}	F _i	M _i	T _i
(ft)	(Fig. 29.3-1)	(psf)	(ft ²)	(kips)	(ft-kips)	(ft-kips)
4.0	1.800	28	44	1.22	7.38	0.00
Σ						
4.0	1.200	18	0	0.00	0.00	0.00
Σ				1.22	7.38	0.00

<== Case C may not be considered, footnote 3 of Fig. 6-20

PROJECT : Las Positas
CLIENT :
JOB NO. : DATE :

PAGE :
DESIGN BY :
REVIEW BY :

HSS (Tube, Pipe) Member Design with Torsional Loading Based on AISC 360-10/16

EWF.20 Post DL+W

INPUT DATA & DESIGN SUMMARY

MEMBER SHAPE (Tube or Pipe) & SIZE

HSS2X2X3/16

<== Tube

STEEL YIELD STRESS

$F_y = 46$ ksi, (317 MPa)

TORSIONAL FORCE

$T_r = 0.114$ ft-kips, (0 kN-m), ASD

AXIAL COMPRESSION FORCE

$P_r = 0.155$ kips, (1 kN), ASD

STRONG AXIS EFFECTIVE LENGTH

$kL_x = 12$ ft, (3.66 m)

WEAK AXIS EFFECTIVE LENGTH

$kL_y = 12$ ft, (3.66 m)

STRONG AXIS BENDING MOMENT

$M_{rx} = 0.835$ ft-kips, (1 kN-m), ASD

STRONG AXIS BENDING UNBRACED LENGTH

$L_b = 6.5$ ft, (1.98 m), (AISC 360 F2.2.c)

STRONG DIRECTION SHEAR LOAD, ASD

$V_{strong} = 0.245$ kips, (1 kN)

WEAK AXIS BENDING MOMENT

$M_{ry} = 0$ ft-kips, (0 kN-m), ASD

WEAK DIRECTION SHEAR LOAD, ASD

$V_{weak} = 0$ kips, (0 kN)

THE DESIGN IS ADEQUATE.

ANALYSIS

CHECK TORSIONAL CAPACITY (AISC 360 H3.1)

$$T_c = \frac{1}{\Omega_T} T_n = \frac{1}{\Omega_T} \begin{cases} \left[0.6F_y, \text{ for } \frac{h}{t} \leq 2.45\sqrt{\frac{E}{F_y}} \right] \\ \left[2(B-t)(H-t) - 4.5(4-\pi)t^3 \right] \left[0.6F_y 2.45\sqrt{\frac{E}{F_y}} \frac{t}{h}, \text{ for } \frac{h}{t} \leq 3.07\sqrt{\frac{E}{F_y}} \right], \text{ for HSS Tube} \\ \left[0.458 \frac{E\pi^2}{(h/t)^2}, \text{ for } \frac{h}{t} \leq 260 \right] \end{cases} = 1.7 \text{ ft-kips}$$

$$\frac{\pi(D-t)^2 t}{2} \text{ Max} \left[\frac{1.23E}{\sqrt{L} \left(\frac{D}{t} \right)^{(5/4)}}, \frac{0.60E}{\left(\frac{D}{t} \right)^{(3/2)}} \right], \text{ for HSS Pipe} > T_r \text{ [Satisfactory]}$$

Where $B = 2.00$ $H = 2.00$ $h = 1.44$ $t = 0.19$ $D = 29000$ $E = 29000$

$\Omega_T = 1.67$, ASD

CHECK COMBINED COMPRESSION AND BENDING CAPACITY (AISC 360 H1)

$$\begin{cases} \frac{P_r}{P_c} + 8 \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right), \text{ for } \frac{P_r}{P_c} \geq 0.2 \\ \frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right), \text{ for } \frac{P_r}{P_c} < 0.2 \end{cases} = 0.47 < 1.3 \text{ [Satisfactory]}$$

(2021 IBC, 1605.3.2)

Where $P_c = P_n / \Omega_c = 8 / 1.67 = 4.65$ kips, (AISC 360 Chapter E)

> P_r [Satisfactory]

$M_{cx} = M_n / \Omega_b = 3.06 / 1.67 = 1.83$ ft-kips, (AISC 360 Chapter F)

> M_{rx} [Satisfactory]

$M_{cy} = M_n / \Omega_b = 3.06 / 1.67 = 1.83$ ft-kips, (AISC 360 Chapter F)

> M_{ry} [Satisfactory]

CHECK SHEAR CAPACITY (AISC 360 G2)

$V_{n,strong} / \Omega_v = 13.8 / 1.67 = 8.3$ kips > $V_{strong} = 0.2$ kips [Satisfactory]

$V_{n,weak} / \Omega_v = 13.8 / 1.67 = 8.3$ kips > $V_{weak} = 0.0$ kips [Satisfactory]

CHECK COMBINED TORSION, SHEAR, COMPRESSION, AND BENDING CAPACITY (AISC 360 H3.2)

$$\begin{cases} \frac{P_r}{P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) + \left[\text{Max} \left(\frac{V_{strong}}{V_{c,strong}}, \frac{V_{weak}}{V_{c,weak}} \right) + \frac{T_r}{T_c} \right]^2, \text{ for } \frac{T_r}{T_c} > 0.2 \\ \text{Torsion Neglected, for } \frac{T_r}{T_c} \leq 0.2 \end{cases} = 0.0 < 1.3 \text{ [Satisfactory]}$$

(2021 IBC, 1605.3.2)

**Anchor Designer™ for
Concrete Software**
Version 3.4.2506.1

Company:		Date:	11/24/2025
Engineer:		Page:	1
Project:	Las Positas		
Address:			
Phone:			
E-mail:			

1. Project information

Project description:
Location: EWF.20 0.9DL+W
Design name: Design

Comment:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-19
Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place
Material: F1554 Grade 55
Diameter (inch): 0.375
Effective Embedment depth, h_{ef} (inch): 12.000
Anchor category: -
Anchor ductility: Yes
 h_{min} (inch): 13.13
 C_{min} (inch): 2.25
 S_{min} (inch): 2.25

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 24.00
State: Cracked
Compressive strength, f_c (psi): 2500
 $\Psi_{c,v}$: 1.2
Reinforcement condition: B tension, B shear
Supplemental edge reinforcement: Not applicable
Reinforcement provided at corners: Yes
Ignore concrete breakout in tension: No
Ignore concrete breakout in shear: No
Ignore 6do requirement: No
Build-up grout pad: Yes

Base Plate

Length x Width x Thickness (inch): 4.25 x 6.00 x 0.50
Yield stress: 50000 psi

Profile type/size: 2-1/2X2-1/2X3/16

Recommended Anchor

Anchor Name: Heavy Hex Bolt - 3/8"Ø Heavy Hex Bolt, F1554 Gr. 55

Company:		Date:	11/24/2025
Engineer:		Page:	2
Project:	Las Positas		
Address:			
Phone:			
E-mail:			

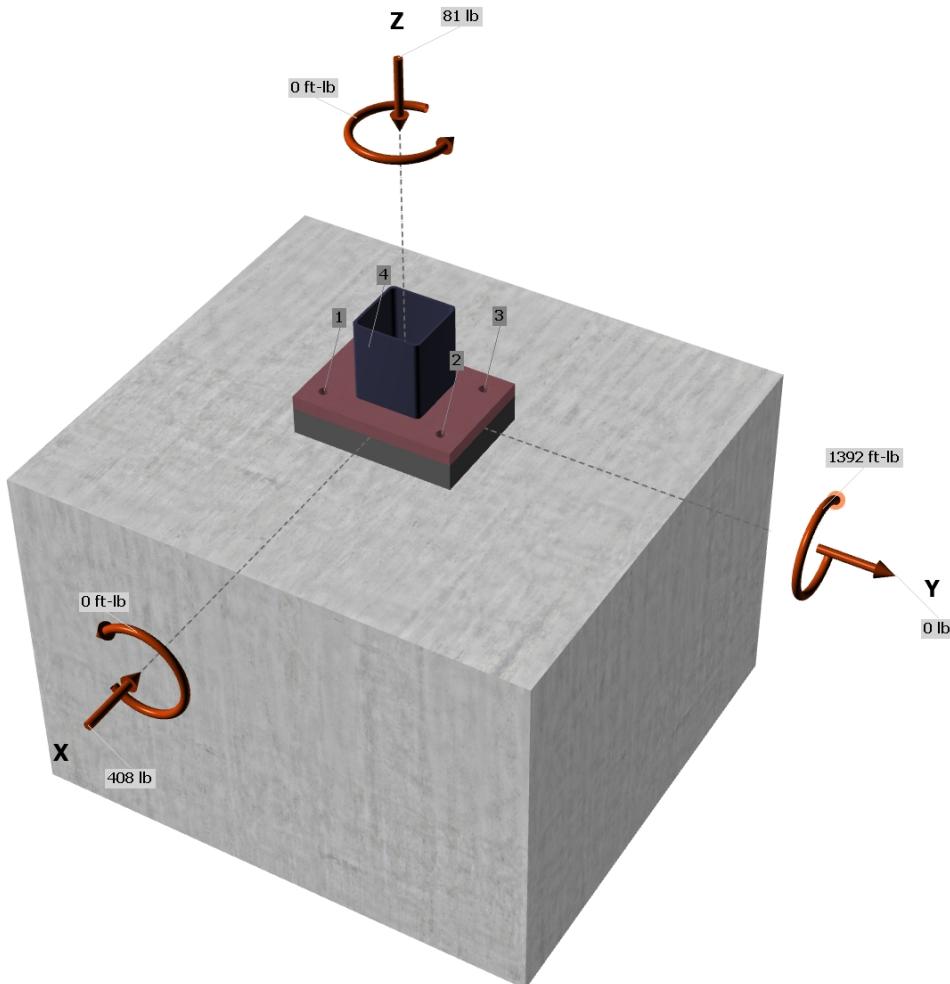
Load and Geometry

Load factor source: ACI 318 Section 5.3

Load combination: not set

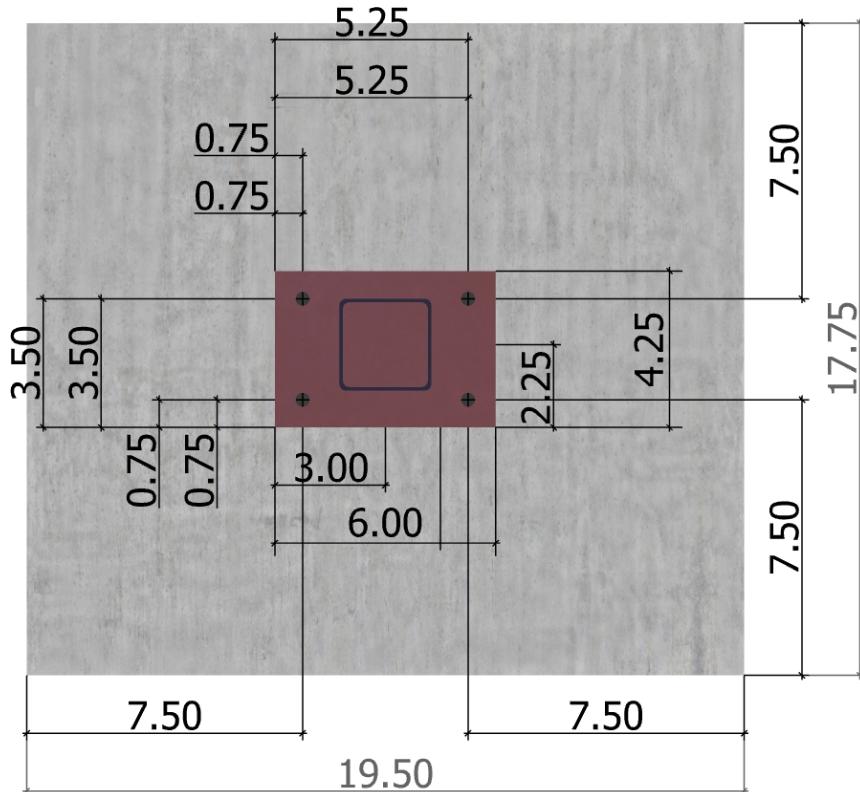
Seismic design: No

Anchors subjected to sustained tension: Not applicable


Apply entire shear load at front row: No

Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:


N_{ua} [lb]: -81
 V_{uax} [lb]: -408
 V_{uay} [lb]: 0
 M_{ux} [ft-lb]: 0
 M_{uy} [ft-lb]: -1392
 M_{uz} [ft-lb]: 0

<Figure 1>

Company:		Date:	11/24/2025
Engineer:		Page:	3
Project:	Las Positas		
Address:			
Phone:			
E-mail:			

<Figure 2>

3. Resulting Anchor Forces

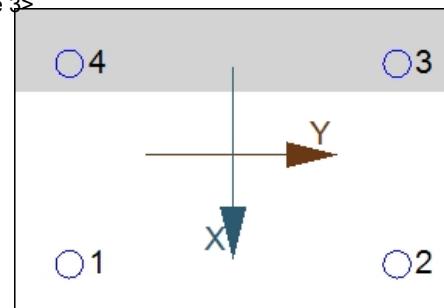
Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb)
1	2653.2	-102.0	0.0	102.0
2	2653.2	-102.0	0.0	102.0
3	0.0	-102.0	0.0	102.0
4	0.0	-102.0	0.0	102.0
Sum	5306.4	-408.0	0.0	408.0

Maximum concrete compression strain (%): 0.37

Maximum concrete compression stress (psi): 1591

Resultant tension force (lb): 5306

Resultant compression force (lb): 5387


Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

**Anchor Designer™ for
Concrete Software**
Version 3.4.2506.1

Company:		Date:	11/24/2025
Engineer:		Page:	4
Project:	Las Positas		
Address:			
Phone:			
E-mail:			

4. Steel Strength of Anchor in Tension (Sec. 17.6.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
5815	0.75	4361

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.6.2)

$$N_b = 16\lambda_a \sqrt{f_c} h_{ef}^{5/3} \text{ (Eq. 17.6.2.2.1)}$$

λ_a	f_c (psi)	h_{ef} (in)	N_b (lb)
1.00	2500	6.833	19685

$$\phi N_{cbg} = \phi (A_{Nc} / A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b \text{ (Sec. 17.5.1.2 & Eq. 17.6.2.1a)}$$

A_{Nc} (in ²)	A_{Nco} (in ²)	$C_{a,min}$ (in)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
346.13	420.25	7.50	1.000	0.920	1.00	1.000	19685	0.70	10436

6. Pullout Strength of Anchor in Tension (Sec. 17.6.3)

$$\phi N_{pn} = \phi \Psi_{c,P} N_p = \phi \Psi_{c,P} 8 A_{brg} f_c \text{ (Sec. 17.5.1.2, Eq. 17.6.3.1 & 17.6.3.2.2a)}$$

$\Psi_{c,P}$	A_{brg} (in ²)	f_c (psi)	ϕ	ϕN_{pn} (lb)
1.0	0.30	2500	0.70	4186

7. Steel Strength of Anchor in Shear (Sec. 17.7.1)

V_{sa} (lb)	ϕ_{grout}	ϕ	$\phi_{grout} \phi V_{sa}$ (lb)
3490	0.8	0.65	1815

8. Concrete Breakout Strength of Anchor in Shear (Sec. 17.7.2)

Shear perpendicular to edge in x-direction:

$$V_{bx} = \min[7(l_e / d_a)^{0.2} \sqrt{d_a \lambda_a \sqrt{f_c} C_{a1}^{1.5}}; 9 \lambda_a \sqrt{f_c} C_{a1}^{1.5}] \text{ (Eq. 17.7.2.2.1a & Eq. 17.7.2.2.1b)}$$

l_e (in)	d_a (in)	λ_a	f_c (psi)	C_{a1} (in)	V_{bx} (lb)
3.00	0.375	1.00	2500	10.25	10661

$$\phi V_{cbgx} = \phi (A_{Vc} / A_{Vco}) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx} \text{ (Sec. 17.5.1.2 & Eq. 17.7.2.1b)}$$

A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
299.81	472.78	1.000	0.846	1.200	1.000	10661	0.70	4806

Shear parallel to edge in y-direction:

$$V_{bx} = \min[7(l_e / d_a)^{0.2} \sqrt{d_a \lambda_a \sqrt{f_c} C_{a1}^{1.5}}; 9 \lambda_a \sqrt{f_c} C_{a1}^{1.5}] \text{ (Eq. 17.7.2.2.1a & Eq. 17.7.2.2.1b)}$$

l_e (in)	d_a (in)	λ_a	f_c (psi)	C_{a1} (in)	V_{bx} (lb)
3.00	0.375	1.00	2500	7.50	6673

$$\phi V_{cbgy} = \phi (2)(A_{Vc} / A_{Vco}) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx} \text{ (Sec. 17.5.1.2, 17.7.2.1(c) & Eq. 17.7.2.1b)}$$

A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgy} (lb)
199.69	253.13	1.000	1.000	1.200	1.000	6673	0.70	8843

9. Concrete Pryout Strength of Anchor in Shear (Sec. 17.7.3)

$$\phi V_{cpq} = \phi k_{cp} N_{cbg} = \phi k_{cp} (A_{Nc} / A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b \text{ (Sec. 17.5.1.2 & Eq. 17.7.3.1b)}$$

k_{cp}	A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕV_{cpq} (lb)
2.0	346.13	225.00	1.000	1.000	1.000	1.000	19685	0.70	25189

10. Results

Interaction of Tensile and Shear Forces (Sec. R17.8)

Tension	Factored Load, N_{ua} (lb)	Design Strength, ϕN_n (lb)	Ratio	Status
Steel	2653	4361	0.61	Pass
Concrete breakout	5306	10436	0.51	Pass

Anchor Designer™ for
Concrete Software
Version 3.4.2506.1

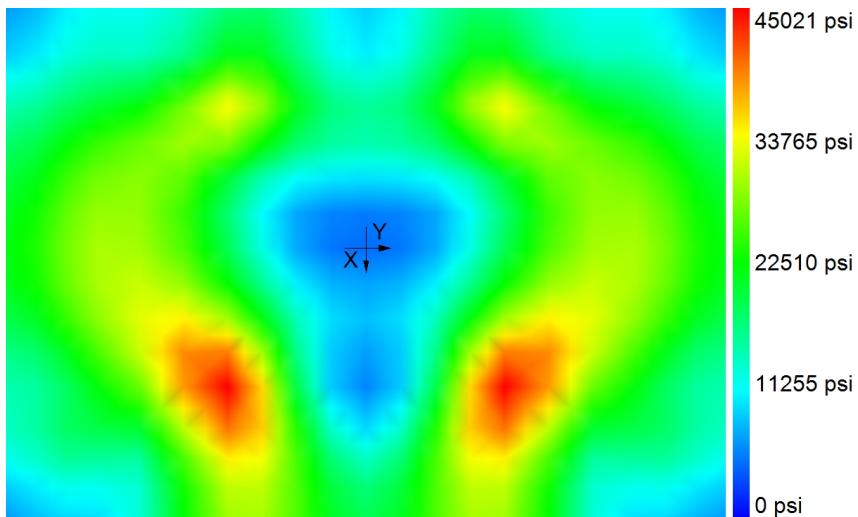
Company:		Date:	11/24/2025
Engineer:		Page:	5
Project:	Las Positas		
Address:			
Phone:			
E-mail:			

Pullout	2653	4186	0.63	Pass (Governs)
----------------	-------------	-------------	-------------	-----------------------

Shear	Factored Load, V_{ua} (lb)	Design Strength, ϕV_n (lb)	Ratio	Status
-------	------------------------------	----------------------------------	-------	--------

Steel	102	1815	0.06	Pass
T Concrete breakout x-	408	4806	0.08	Pass (Governs)
Concrete breakout y+	204	8843	0.02	Pass
Pryout	408	25189	0.02	Pass

Interaction check	$(N_{ua}/\phi N_{us})^{5/3}$	$(V_{ua}/\phi V_{us})^{5/3}$	Utilization Ratio	Permissible	Status
-------------------	------------------------------	------------------------------	-------------------	-------------	--------


Sec. R17.8	0.47	0.02	48.4%	1.0	Pass
------------	------	------	-------	-----	------

3/8"Ø Heavy Hex Bolt, F1554 Gr. 55 with hef = 12.000 inch meets the selected design criteria.

Company:		Date:	11/24/2025
Engineer:		Page:	6
Project:	Las Positas		
Address:			
Phone:			
E-mail:			

Base Plate Thickness

Steel **50000 psi**
 Maximum stress **45021 psi**
 Calculated plate thickness **0.356 inch**
 Stress distribution

For ACI and CSA design methods, maximum base plate stress is limited to 0.9 times yield stress.

For ETAG and EN-1992-4 design method, maximum base plate stress is limited to yield stress divide by 1.5.
 Plate stress is derived using Von Mises theory.

$$\sigma_{xx} = \frac{F_{xx}}{t} + \frac{6M_{xx}}{t^2} \text{ (@ bottom) or } \sigma_{xx} = \frac{F_{xx}}{t} - \frac{6M_{xx}}{t^2} \text{ (@ top)}$$

$$\sigma_{yy} = \frac{F_{yy}}{t} + \frac{6M_{yy}}{t^2} \text{ (@bottom) or } \sigma_{yy} = \frac{F_{yy}}{t} - \frac{6M_{yy}}{t^2} \text{ (@ top)}$$

$$\sigma_{xy} = \frac{F_{xy}}{t} + \frac{6M_{xy}}{t^2} \text{ (@bottom) or } \sigma_{xy} = \frac{F_{xy}}{t} - \frac{6M_{xy}}{t^2} \text{ (@ top)}$$

$$\sigma_{xz} = \frac{V_x}{t}$$

$$\sigma_{yz} = \frac{V_y}{t}$$

$\sigma_{xx}, \sigma_{yy}, \sigma_{xy}$ as follows:

$$S_1 = \frac{\sigma_{xx} + \sigma_{yy}}{2} + \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \sigma_{xy}^2}$$

$$S_2 = \frac{\sigma_{xx} + \sigma_{yy}}{2} - \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \sigma_{xy}^2}$$

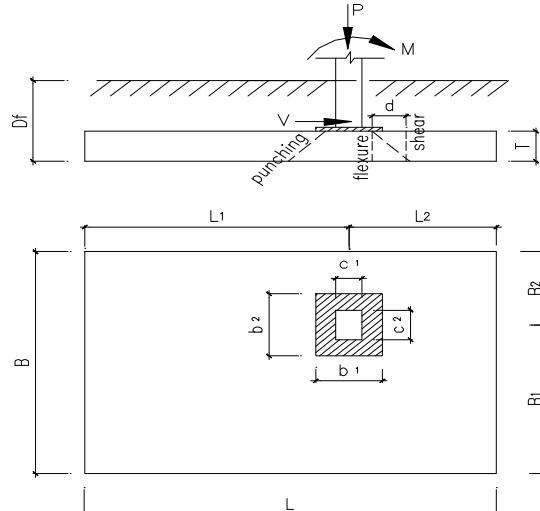
$$S_3 = 0$$

$$\sigma_{VonMises} = \sqrt{\frac{(S_1 - S_2)^2 + (S_1 - S_3)^2 + (S_2 - S_3)^2}{2}}$$

11. Warnings

- Calculated concrete compression stress exceeds the permissible bearing stress of $\phi 0.85f'_c$ per ACI 318 Section 22.8.3.
- Designer must exercise own judgement to determine if this design is suitable.

Eccentric Footing Design Based on ACI 318-19


EWF.20 0.9DL+W Spread Ftg.

INPUT DATA

COLUMN WIDTH	c_1	=	2	in
COLUMN DEPTH	c_2	=	2	in
BASE PLATE WIDTH	b_1	=	5	in
BASE PLATE DEPTH	b_2	=	5	in
FOOTING CONCRETE STRENGTH	f_c'	=	2.5	ksi
REBAR YIELD STRESS	f_y	=	60	ksi
AXIAL DEAD LOAD	P_{DL}	=	1.039	k
AXIAL LIVE LOAD	P_{LL}	=	0	k
LATERAL LOAD (0=WIND, 1=SEISMIC)		=	0	Wind, SD
WIND AXIAL LOAD	P_{LAT}	=	0	k, SD
WIND MOMENT LOAD	M_{LAT}	=	1.703	ft-k, SD
WIND SHEAR LOAD	V_{LAT}	=	0.408	k, SD
SURCHARGE	q_s	=	0	ksf
SOIL WEIGHT	w_s	=	0.11	kcf
FOOTING EMBEDMENT DEPTH	D_f	=	1.5	ft
FOOTING THICKNESS	T	=	12	in
ALLOWABLE SOIL PRESSURE	Q_a	=	2	ksf
FOOTING WIDTH	B_1	=	1.6	ft
	B_2	=	1.6	ft
FOOTING LENGTH	L_1	=	1.6	ft
	L_2	=	1.6	ft
REINFORCING SIZE		#	4	

DESIGN SUMMARY

FOOTING WIDTH	B	=	3.20	ft
FOOTING LENGTH	L	=	3.20	ft
FOOTING THICKNESS	T	=	12	in
LONGITUDINAL REINF., TOP		1 # 4		
LONGITUDINAL REINF., BOT.		3 # 4 @ 16 in o.c.		
TRANSVERSE REINF., BOT.		3 # 4 @ 16 in o.c.		

THE FOOTING DESIGN IS ADEQUATE.

ANALYSIS

DESIGN LOADS AT TOP OF FOOTING (IBC 1605.2 & ACI 318 5.3)

CASE 1:	DL + LL	P = 1 kips	1.2 DL + 1.6 LL	P _u = 1 kips
		M = 0 ft-kips		M _u = 0 ft-kips
		e = 0.0 ft, fr cl ftg		e _u = 0.0 ft, fr cl ftg
CASE 2:	DL + LL + 0.6(1.3) W	P = 1 kips	1.2 DL + LL + 1.0 W	P _u = 1 kips
		M = 1 ft-kips		M _u = 2 ft-kips
		V = 0 kips		V _u = 0 kips
CASE 3:	DL + LL + 0.6(0.65) W	P = 1 kips	0.9 DL + 1.0 W	P _u = 1 kips
		M = 1 ft-kips		M _u = 2 ft-kips
		V = 0 kips		V _u = 0 kips
		e = 0.9 ft, fr cl ftg		e _u = 1.8 ft, fr cl ftg

CHECK OVERTURNING FACTOR (2021 IBC 1605.2.1, 1808.3.1, & ASCE 7-22 12.13.4)

$M_R / M_O = 2.4 > F = 1.0 / 0.9 = 1.11$ [Satisfactory]

$$\text{Where } M_O = M_{LAT} + V_{LAT} T - P_{LAT} L_2 = 2 \text{ k-ft}$$

$$P_{ftq} = (0.15 \text{ kcf}) T B L = 1.54 \text{ k, footing weight}$$

$$P_{soil} = w_s (D_f - T) B L = 0.56 \quad k, \text{ soil weight}$$

$$M_R = P_{DL}L_2 + 0.5 (P_{fg} + P_{soil}) L = 5 \text{ k-ft}$$

FOR REVERSED LATERAL LOADS,

$M_R / M_O = 2.2 > F = 1.0 / 0.9$ [Satisfactory]

Where $M_O = M_{LAT} + V_{LAT} D_f - P_{LAT} L_1 = 2 \text{ k-ft}$

$$M_R = P_{DL}L_1 + 0.5 (P_{fg} + P_{soil}) L = 5 \text{ k-ft}$$

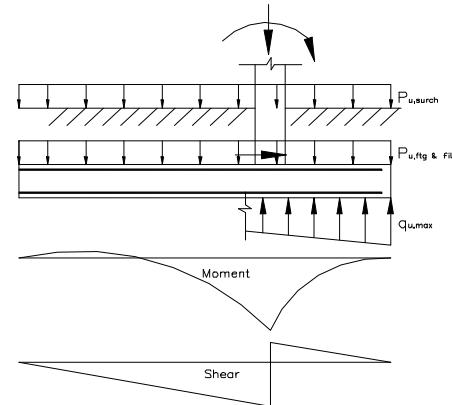
CHECK SLIDING (2021 IBC 1807.2.3)

1.5 (V_{Lat, ASD}) = 0.3672 kips < $\mu \Sigma W$ = 1.03 kips **[Satisfactory]**
 Where μ = 0.4

CHECK SOIL BEARING CAPACITY (ACI 318 13.3.1.1)

Service Loads	CASE 1	CASE 2	CASE 3	
P	1.0	1.0	1.0	
e	0.0	1.7	1.1	ft (from center of footing)
q _s B L	0.0	0	0.0	k, (surcharge load)
(0.15-w _s)T B L	0.4	0.4	0.2	k, (footing increased)
Σ P	1.4	1.4	1.3	k
e _L	0.0 < L/6	1.2 > L/6	0.9 > L/6	ft
e _B	0.0 < B/6	0.0 < B/6	0.0 < B/6	ft
q _L	0.5	2.7	1.2	k / ft
q _{max}	0.1	0.9	0.4	ksf
q _{allow}	2.0	2.7	2.7	ksf

Where


$$q_L = \begin{cases} \frac{(\Sigma P) \left(1 + \frac{6e_L}{L}\right)}{L}, & \text{for } e_L \leq \frac{L}{6} \\ \frac{2(\Sigma P)}{3(0.5L - e_L)}, & \text{for } e_L > \frac{L}{6} \end{cases} \quad q_{MAX} = \begin{cases} \frac{q_L \left(1 + \frac{6e_B}{B}\right)}{B}, & \text{for } e_B \leq \frac{B}{6} \\ \frac{2q_L}{3(0.5B - e_B)}, & \text{for } e_B > \frac{B}{6} \end{cases} \quad [\text{Satisfactory}]$$

DESIGN FLEXURE & CHECK FLEXURE SHEAR

(ACI 318 13, 21, & 22)

$$q_{u,MAX} = \begin{cases} \frac{(\Sigma P_u) \left(1 + \frac{6e_u}{L}\right)}{BL}, & \text{for } e_u \leq \frac{L}{6} \\ \frac{2(\Sigma P_u)}{3B(0.5L - e_u)}, & \text{for } e_u > \frac{L}{6} \end{cases} \quad \rho_{MAX} = \frac{0.85 \beta_{1f} f_c}{f_y} \frac{\varepsilon_u}{\varepsilon_u + \varepsilon_t}$$

$$\rho = \frac{0.85 f_c \left(1 - \sqrt{1 - \frac{M_u}{0.383bd^2 f_c}}\right)}{f_y} \quad \rho_{MIN} = MIN \left(0.0018 \frac{T}{d}, \frac{4}{3} \rho \right)$$

FACTORED SOIL PRESSURE

Factored Loads	CASE 1	CASE 2	CASE 3	
P _u	1.2	1.2	0.9	k
e _u	0.0	1.7	2.3	ft
γ q _s B L	0.0	0.0	0.0	k, (factored surcharge load)
γ[0.15T + w _s (D _f - T)]BL	2.5	2.5	1.9	k, (factored footing & backfill loads)
Σ P _u	3.8	3.8	2.8	k
e _u	0.0 < L/6	0.6 > L/6	0.7 > L/6	ft
q _{u, max}	0.368	0.755	0.690	ksf

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 1

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.40	0.80	1.20	1.45	1.75	2.00	2.40	2.80	3.20
M _{u,col} (ft-k)	0	0	0	0	0	-0.2	-0.5	-1.0	-1.5	-2.0
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	1.2	1.2	1.2	1.2	1.2
P _{u,surch} (klf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,ftg & fill} (klf)	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
M _{u,ftg & fill} (ft-k)	0	-0.1	-0.3	-0.6	-0.8	-1.2	-1.6	-2.3	-3.1	-4.0
V _{u,ftg & fill} (k)	0	0.3	0.6	0.9	1.1	1.4	1.6	1.9	2.2	2.5
q _{u,soil} (ksf)	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37
M _{u,soil} (ft-k)	0	0.1	0.4	0.8	1.2	1.8	2.4	3.4	4.6	6.0
V _{u,soil} (k)	0	-0.5	-0.9	-1.4	-1.7	-2.1	-2.4	-2.8	-3.3	-3.8
Σ M _u (ft-k)	0	0.0	0.1	0.3	0.4	0.4	0.3	0.1	0.0	0
Σ V _u (kips)	0	-0.2	-0.3	-0.5	-0.6	0.6	0.5	0.3	0.2	0

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 2

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.40	0.80	1.20	1.45	1.75	2.00	2.40	2.80	3.20
M _{u,col} (ft-k)	0	0	0	0	0	1.9	1.6	1.1	0.6	0.1
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	1.2	1.2	1.2	1.2	1.2
P _{u,surch} (klf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (klf)	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
M _{u,fg & fill} (ft-k)	0	-0.1	-0.3	-0.6	-0.8	-1.2	-1.6	-2.3	-3.1	-4.0
V _{u,fg & fill} (k)	0	0.3	0.6	0.9	1.1	1.4	1.6	1.9	2.2	2.5
q _{u,soil} (ksf)	0.00	0.09	0.19	0.28	0.34	0.41	0.47	0.57	0.66	0.75
M _{u,soil} (ft-k)	0	1.8	3.1	4.0	4.3	4.6	4.7	4.6	4.4	3.9
V _{u,soil} (k)	0	-0.9	-1.7	-2.3	-2.7	-3.0	-3.3	-3.5	-3.7	-3.8
ΣM_u (ft-k)	0	1.7	2.8	3.4	3.5	5.3	4.7	3.5	1.9	0
ΣV_u (kips)	0	-0.6	-1.0	-1.4	-1.5	-0.4	-0.4	-0.4	-0.3	0

FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 3

Section	0	0.25 L ₁	0.50 L ₁	0.75 L ₁	Col _L	Col _R	0.25 L ₂	0.50 L ₂	0.75 L ₂	L
X _u (ft, dist. from left of footing)	0	0.40	0.80	1.20	1.45	1.75	2.00	2.40	2.80	3.20
M _{u,col} (ft-k)	0	0	0	0	0	2.0	1.7	1.4	1.0	0.6
V _{u,col} (k)	0	0.0	0.0	0.0	0.0	0.9	0.9	0.9	0.9	0.9
P _{u,surch} (klf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M _{u,surch} (ft-k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V _{u,surch} (k)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P _{u,fg & fill} (klf)	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59
M _{u,fg & fill} (ft-k)	0	0.0	-0.2	-0.4	-0.6	-0.9	-1.2	-1.7	-2.3	-3.0
V _{u,fg & fill} (k)	0	0.2	0.5	0.7	0.9	1.0	1.2	1.4	1.7	1.9
q _{u,soil} (ksf)	0.00	0.00	0.17	0.26	0.31	0.38	0.43	0.52	0.60	0.69
M _{u,soil} (ft-k)	0	0.0	2.3	2.9	3.1	3.2	3.2	3.1	2.8	2.4
V _{u,soil} (k)	0	0.0	-1.4	-1.9	-2.2	-2.4	-2.6	-2.8	-2.9	-2.8
ΣM_u (ft-k)	0	0.0	2.1	2.4	2.5	4.3	3.8	2.8	1.5	0
ΣV_u (kips)	0	0.2	-0.9	-1.2	-1.3	-0.5	-0.5	-0.4	-0.3	0

DESIGN FLEXURE

Location	M _{u,max}	d (in)	P _{min}	P _{reqD}	P _{max}	s _{max}	use	P _{provD}
Top Longitudinal	0.0	ft-k	9.75	0.0000	0.0000	no limit	1 # 4	0.0005
Bottom Longitudinal	5.3	ft-k	8.75	0.0005	0.0004	0.0129	3 # 4 @ 16 in o.c.	0.0018
Bottom Transverse	0	ft-k / ft	8.50	0.0000	0.0000	0.0129	18	3 # 4 @ 16 in o.c.

[Satisfactory]

CHECK FLEXURE SHEAR

Direction	V _{u,max}	$\phi V_c = 2 \phi b d (f'_c)^{0.5}$	check V _u < ϕV_c
Longitudinal	1.5 k	25 k	[Satisfactory]
Transverse	0.2 k / ft	8 k / ft	[Satisfactory]

CHECK PUNCHING SHEAR (ACI 318 13.2.7.2, 22.6.4.1, 22.6.4.3, & 8.4.2.3)

$$v_{uL} (\text{psi}) = \frac{P_u - R}{AP} + \frac{0.5\gamma_v M_{ub1}}{J}$$

$$AP = 2(b_1 + b_2)d$$

$$\phi v_c (\text{psi}) = \phi(2 + y) \sqrt{f'_c}$$

$$J = \left(\frac{db_1^3}{6} \right) \left[1 + \left(\frac{d}{b_1} \right)^2 + 3 \left(\frac{b_2}{b_1} \right) \right]$$

$$\gamma_v = 1 - \frac{1}{1 + \frac{2}{3} \sqrt{\frac{b_1}{b_2}}}$$

$$y = \text{MIN} \left(2, \frac{4}{\beta_c}, 40 \frac{d}{b_0} \right)$$

$$R = \frac{P_u b_1 b_2}{A_f}$$

$$A_f = BL$$

$$b_0 = \frac{AP}{d}, b_1 = (0.5c_1 + 0.5b_1 + d), b_2 = (0.5c_2 + 0.5b_2 + d)$$

Case	P _u	M _u	b ₁	b ₂	b ₀	γ_v	β_c	y	A _f	A _p	R	J	V _u (psi)	ϕV_c
1	1.2	0.0	12.0	12.0	0.3	0.4	1.0	2.0	10.2	2.8	0.1	0.5	2.8	150.0
2	1.2	1.7	12.0	12.0	0.3	0.4	1.0	2.0	10.2	2.8	0.1	0.5	2.8	150.0
3	0.9	1.7	12.0	12.0	0.3	0.4	1.0	2.0	10.2	2.8	0.1	0.5	2.1	150.0

[Satisfactory]

where $\phi = 0.75$, (ACI 318 21.2)